
1 Introdu
tionIPSe
 is an open draft standard for pa
ket level se
urity in IP networks. Itintends to provide prote
tion against eavesdropping and data tampering bythird parties, features the 
urrent IP infrastru
ture is desparately la
king.IPSe
 is a standard part of the IPv6 proto
ol, therefore its presen
e in theinfrastru
ture of the internet will be pervasive on
e IPv6 fully is enrolled.But IPSe
 is not restri
ted to IPv6, 
urrently most implementations run onIPv4.IPSe
 is under a
tive development by the IETF IPSe
 working group.At least partly be
ause the IPSe
 standards are the result of a 
ommitteethe standards tend to be overly 
omplex and 
ontain way to many featuresand options. Ferguson and S
hneier evaluated the IPSe
 spe
i�
ations in[FeS
h00℄. Their biggest 
omplaint against IPSe
 was the aforementioned
omplexity. Ironi
ally in this paper they both re
ommend against usingIPSe
 and in favor of using IPSe
. The dilemma is 
aused by the fa
t thatall alternatives to IPSe
 are far worse (se
urity wise).FreeS/WAN is an open sour
e implementation of IPSe
 for the Linux op-erating system. John Gilmore of the Ele
troni
 Frontier Foundation startedthe proje
t to answer his self set goal to prote
t internet tra�
 against passivewiretapping. The 
ode is under a
tive development by a team of volunteersfrom all over the world. Unlike other IPSe
 implementations FreeS/WANdoes not su�er from the 
ryptography export regulations of the US: all 
odeis maintained in a free 
ountry outside the US and the development teampays signi�
ant attention to staying 'export 
lean'1.The basi
 
omponents of FreeS/WAN are depi
ted in �gure 1, whi
hshows two hosts, West Gate and East Gate, that 
ommuni
ate with ea
hother via IPSe
. Typi
ally at least one of the ma
hines is a gateway to aninternal subnet. Together the gates and the subnet 
reate one Virtual PrivateNetwork (VPN) that is se
urely inter
onne
ted over the internet.For IPSe
 the IP 
onne
tion 
arries two types of tra�
:� ESP, whi
h stands for En
rypted Se
urity Payload. This is the en-
rypted IP tra�
 between the hosts� IKE, whi
h stands for Internet Key Ex
hange. This the proto
ol bywhi
h session keys of ESP are ex
hanged.1Amongst others this means a

epting no sour
e 
ode from Ameri
ans. The US haverelaxed their export regulations January 2000 and now allow open sour
e proje
ts to exportstrong 
ryptography. Be
ause of that the team may relax its poli
y in the near future.



Figure 1: FreeS/WAN 
omponentsThe KLIPS module inside the Linux kernel performs the en
ryption of theIP data to ESP and the de
ryption of ESP to IP data. The session keyex
hanges are handled by a user spa
e pro
ess 
alled Pluto. Pluto has a listof long term keys to authenti
ate these key ex
hanges. Currently these longterm keys are stored on harddisk. The goal of this paper is to investigateother safer means to store these se
rets.2 Key management in IPSe
FreeS/WAN has two keying methods: manual keying and automati
 keying.With manual keying the session key itself is spe
i�ed in the 
on�guration �le(/et
/ipse
.
onf). Upon initialization FreeS/WAN passes this key dire
tly tothe kernel level IP en
ryption module. FreeS/WAN performs no key man-agement at all, that burden is left to the administrator. This keying methodis only intended for debugging purposes: sin
e there is no key managementit is 
onvenient for 
he
king the setup without worrying whether both gatesuse the same session key. However, it is not very se
ure: anyone who 
anobtain the key 
an de
rypt all past and future 
ommuni
ation simply byeavesdropping.The se
ond method, automati
 keying, is more sophisti
ated: using long



term keys, a daemon pro
ess, the Pluto daemon, regularly negotiates sessionkeys with its peer. Tra�
 will never be en
rypted with the long term keyonly with the session keys. IPSe
 peers negotiate their session keys with theInternet Key Ex
hange proto
ol [IKE℄.2.1 the Internet Key Ex
hangeIKE is an elaborate proto
ol for key ex
hanges, with multiple multiple modesand phases. IKE de�nes key negotiation based on pre-shared se
rets, digitalsignatures and publi
 key en
ryption. FreeS/WANs IKE implementation,the Pluto daemon, has supported the pre-shared se
ret method sin
e its �rstrelease. Re
ently support for key negotiation based on publi
 key en
ryptionhas been added.IKE uses the Di�e-Hellman key ex
hange [DH℄ to establish a sharedse
ret between the two peers. With Di�e-Hellman no pre-shared key isne
essary to negotiate this se
ret. But what good is a negotiated se
retif you don't know with whom you share it? This is where the pre-sharedse
ret or publi
 key 
rypto key pairs 
ome into play: with these the IKEdaemons ea
h 
al
ulate an authenti
ation 
ode, 
alled the initiator digestand responder digest respe
tively.The exa
t formula's for shared se
rets based session key 
al
ulation aregiven in algorithm 1. Several keys are de�ned:� SKEY ID is the primary session key, from whi
h all other session keysare derived.� SKEY IDD is keying material used to derive keys for se
urity servi
esduring phase 2 of IKE.� SKEY IDA is the keying material used by the parties of the ex
hangefor message integrity.� SKEY IDE is the keying material used by the parties of the ex
hangeto prote
t the 
on�dentiality of messages.The 'prf' fun
tion in these 
al
ulations denotes a pseudo-random fun
tion'.IKE a
tually uses the HMAC-SHA-1 
onstru
tion by default, whi
h providesthe se
urity we need, if the hash fun
tion SHA-1 is se
ure.The 
al
ulations use the following parameters:� Ni and Nr are two non
es generated by the initiator and responderrespe
tively.



Algorithm 1 
al
ulation of session keys and digests in IKE using sharedse
rets.SKEY ID = prf(pre� shared� key;NijNr)SKEY IDD = prf(SKEY ID; girjCKYIjCKYRj0)SKEY IDA = prf(SKEY ID; SKEY IDD; girjCKYIjCKYRj1)SKEY IDE = prf(SKEY ID; SKEY IDD; girjCKYI jCKYRj2)Idigest = prf(SKEY ID; gijgrjCKYI jCKYRjSAibjIDi1b)Rdigest = prf(SKEY ID; grjgijCKYRjCKYIjSAibjIDr1b)� gi, gr and gir are respe
tively the Di�e-Hellman publi
 values of theinitiator and responder and the ex
hanged Di�e-Hellman se
ret.� CKYI and CKYR are the 
ookies generated by the initiator and re-sponder that identify the Se
ure Asso
iation.� SAib is the entire body of the 'SA payload'. This payload 
ontains theDomain of Interpretation (DOI) and the en
ryption proposals amongstothers.IKE ex
hanges these parameters in the following proto
ol �ow:Initiator ResponderSA �! � SAgi; Ni �! � gr; NrE(IDi1; Idigest) �! � E(IDr1; Rdigest)The last two messages are en
rypted with a key derived from SKEY IDE,thus shielding the IDs of both parties from eavesdropping.An important property of the IKE proto
ol is Perfe
t Forward Se
re
y(PFS). This is the notion that 
ompromise of a single key will permit a
-
ess only to data prote
ted by a single key[IKE℄. In e�e
t this means that
ompromise of the long term key (the pre-shared se
ret) will not make thesystem vulnerable to passive atta
ks: from this key and eavesdropped 
om-muni
ation alone the atta
ker 
annot dedu
e the data en
ryption keys of a



session. Knowledge of the long term keys allows an a
tive man in the middleatta
k however. Of 
ourse with knowledge of the long term keys an atta
keralso 
an pretend to be one of the legitimate parties and initiate a se
ure
onne
tion.Certainly the prote
tion of the automati
 keying me
hanism is mu
h bet-ter than the se
urity of the manual keying method, but nevertheless 
ompro-mise of the long term keys has serious se
urity impli
ations.3 Methods for improving the se
urity of sharedse
retsTo improve the se
urity of FreeS/WAN against a
tive atta
ks we need tobetter prote
t our long term keys. Sure, Linux' standard �le system, ext2,has a

ess 
ontrols that 
an prevent anyone but the root user to read theIPSe
 se
rets �le (/et
/ipse
.se
rets). But that will not help very mu
h on
esomeone has ha
ked the root a

ount or the ma
hine has been stolen. Or adisgruntled (ex)employee with root privileged may have made a 
opy of the�le.3.1 Hardware tokensSmart
ards are a popular form of hardware tokens. In the Netherlands aloneover 26 million smart
ards2 are in use, on a population of 16 million peo-ple. Smart
ards basi
ally are fully integrated 
omputers (CPU, ROM, RAMand I/O) in a single 
hip glued on a 
redit 
ard format plasti
 
ard. ISOhas de�ned standards for smart
ards in ISO7816, ranging from physi
al andele
tri
al 
hara
teristi
s in part 1 and 2, data 
ommuni
ation in part 3, ap-pli
ation 
ommand in part 4, to servi
es in part 5, 6 and 7. Almost all 
ardsimplement (at least part of) the 
ommand set des
ribed in ISO7816-4, parts5 and higher often are not implemented. They o�er a simple hierar
hi
al �lesystem with a

ess prote
tion (with passwords or 
hallenge/response) and
ontent authenti
ation (through keyed Message Authenti
ation Codes).Mostly be
ause of politi
al reasons, smart
ards traditionally have beenvery restri
tive: it was not possible to upload your own programs on your
ard, even writing your own keys on the 
ard often was limited.Most 
ard manufa
turers now also o�er Java Card 
ompliant smart
ards.Java Card te
hnology, introdu
ed by SUN Mi
rosystems, o�ers mu
h more213.400.000 Chipknip 
ards [Ipay℄ + 7.000.000 
hipper 
ards [Chip℄ + 6.000.000 GSMSIM 
ards.



freedom: developers 
an write little programs (applets) that 
an be loadedin the 
ard and exe
uted. Some other bene�ts Sun mentions are:Platform Independen
eJava Card te
hnology applets that 
omply with the Java Card API spe
i�
a-tion will run on 
ards developed using Java Card Appli
ation Environment.This way developers 
an reuse the same applet with 
ards from di�erentvendors.Multi-Appli
ation CapableMultiple appli
ations 
an run on a single 
ard. The Java runtime environ-ment in the 
ard ensures that multiple appli
ations 
an se
urely reside andexe
ute on the same 
ard.Post-Issuan
e of Appli
ationsAppli
ations 
an be installed after the 
ard has been issued. This enables
ard issuers to dynami
ally respond to their 
ustomer's 
hanging needs.FlexibilityThe obje
t oriented methodology of the Java Card te
hnology provides �ex-ibility in programming smart
ards.Compatibility with Existing Smart
ard StandardsThe Java Card API is 
ompatible with formal international standards su
has ISO7816 and industry-spe
i�
 standards (e.g. EMV).3.2 The Dallas Semi
ondu
tor iButtonThe iButton is a standard JAVA �
ard� in a 16 mm, stainless steel 
ase. Somea

essories enable one to to wear the iButton, like metal 
ards, wat
hes, or�nger rings. Note that the �wearability� is not a a funky feature as userfriendly 
onstru
tions are absolutely vital for se
ure systems.�While 
ards are �ne for playing poker, they're not a safe pla
eto keep a fragile 
hip that de�nes your digital identity.� [Dallas℄



The unusual form of the i-Button provides reasonable se
urity against hard-ware atta
ks, 
ompared to the se
urity of ordinary 
hip 
ards [WTK97℄.Furthermore the 
ase provides 
lear visual eviden
e of tampering.Dallas Semi
ondu
tor [Dallas℄ gives the following summary of the physi
alse
urity:� Armored with stainless steel for the hard kno
ks of everyday use� Wear tested for 1 million insertions and more than 10 years of life� ESD prote
tion is more than 25,000 volts for wash-and-wear depend-ability� Three-layer metal te
hnology and �ip-
hip bonding form barri
ades toprote
t data� Opening of the physi
al perimeter generates a tamper response� Tamper response 
auses rapid zeroization of NV SRAM to preventdis
losure of se
ure data.The 6 KB of SRAM in
luded on the monolithi
 
hip has been spe
iallydesigned so that it will rapidly erase its 
ontents in the event of an intrusion.The following instan
es are treated as intrusions:� Opening the 
ase� Removing the metallurgi
ally bonded substrate barri
ade� Mi
ro-probing the 
hip� Subje
ting the 
hip to temperature extremes.There are several design elements against Di�erential Fault Analysis. Thusif ex
essive voltage is en
ountered, the sole I/O pin is designed to fuse. Thiswill render the 
hip inoperable.The National Institute of Standards (NIST) and the Canadian Se
urityEstablishment (CSE) have validated a version of the 
rypto i-Button for pro-te
tion of sensitive, un
lassi�ed information. FIPS 140-1 validation assuresgovernment agen
ies that the produ
ts provide a trusted, physi
ally se
uremodule to properly prote
t se
ure information.A

ording to Dallas Semi
ondu
tor, over 27 million i-Buttons are 
ur-rently (Nov. 1999) in 
ir
ulation.



Figure 2: the Dallas Semi
ondu
tor iButton and Blue Dot Re
eptor3.3 The smart
ard �le system methodThe simplest proposed method to let the se
rets reside in a hardware token isto use the token as a mobile private �le system. The Pluto daemon will simplyread out the long term key from the button when it needs it instead of from/et
/ipse
.se
rets. This 
ould be implemented even without modi�
ationof the Pluto implementation: a new 'smart
ard' �le system in the Linuxkernel 
ould mount the data �les from the smart
ard into the normal virtual�le system hierar
hy. Pluto then 
an simply read the keys like a normal�le, without even knowing the keys are not stored on hard disk. Itoi, e.a.explored the idea for a 'UNIX smart
ard �le system in [IHR98℄. They builtan implementation for OpenBSD and whi
h is now su

essfully used by theauthors to store their private Se
ure Shell (SSH) keys on smart
ards.This method 
learly is an improvement over storing keys on the hard disk,but when 
ard is inserted the key still is vulnerable.3.4 SKEYID 
al
ulation on the 
ard methodA better se
urity model has the following minimum requirements for theproto
ol[Weis00℄:� The se
ret master key must never leave the 
ard.� The proto
ol has to be se
ure against a master key re
overy atta
k.� It's not feasible to de
rypt tra�
 without breaking the host 
ipher orthe pseudorandom fun
tion on the 
ard.



Furthermore it is highly preferable that the proto
ol not only �ts within theIPSe
 framework but is 
ompatible with it on the wire level: the proto
olshould allow interoperability with other IPSe
 implementations without theirmodi�
ation.The IPSe
 working group has not made re
ommendations on se
ure stor-age of IPSe
's se
rets. However, the session key 
al
ulations IKE de�nesprovide a logi
al approa
h: IKE uses the long term key at only one point, inthe 
al
ulation of the SKEYID. It makes sense to perform this in the 
ardand all further session key 
al
ulations in the host. Cal
ulating SKEY IDD,SKEY IDA; et
. in the 
ard does not improve the se
urity of the sharedse
ret and requires extra CPU resour
es of the relatively slow smart
ard.The se
urity of this s
heme relies on the se
urity of the HMAC 
al
ulation.It shall not be possible to re
over the se
ret key in a 
hosen plaintext atta
k,ie. against an adversary that 
an send arbitrary non
es to the 
ard and readba
k the results. The se
urity of HMAC relies on relatively weak assumptionson the underlying hash fun
tion. IKE uses SHA1 as underlying hash, whi
hsatis�es these assumptions. The se
urity of HMAC-SHA1 stands, there is
urrently no known atta
k against it.3.5 En
ryption of tra�
 by the 
ard itselfIf we use a smart
ard only to negotiate session keys via IKE, an IPSe
 
on-ne
tion 
an stay open after a user has removed the 
ard: as long as thesession key does not expire there is no need for an SKEYID 
al
ulation.More se
ure behaviour would be that the host 
an 
ommuni
ate throughIPSe
 
onne
tion only when the 
ard is a

essible for the host. From a userperspe
tive this also is more intuitive: the user 
an be assured that no IPSe

ommuni
ation is possible when the smart
ard is not inserted.In this model we require that:1. The re
eiving host 
an verify that a re
eived pa
ket was sent when thesending host had a

ess to the smart
ard (so it 
an dis
ard pa
ket forwhi
h this does not hold).2. The re
eiving host 
annot de
rypt re
eived data pa
kets without a

essto the smart
ard.One might try to for�ll these requirements by bringing down the IPSe
 
on-ne
tion when the smart
ard is removed. To reestablish the 
onne
tion IKEwould need to renegotiate session keys, whi
h it 
annot do without the 
ard.In general this feature is a good addition to basi
 smart
ard enabled SKEYID




al
ulation: it allows the user to regard its smart
ard as an ignition key. Cardinserted means 
onne
tivity, 
ard not inserted means no 
onne
tivity.However, this method does not stri
tly 
onform to our requirements. Thesending host 
an send pa
kets that will be a

ept by the re
ipient even whenit does not have a

ess to the smart
ard, it simply must not bring down the
onne
tion when the 
ard is removed. Likewise the host 
an keep de
ryptingdata it re
eives. The peer host is dependent on 'de
ent' behaviour by its
ommuni
ating partner.To enfor
e the requirements a more se
ure method has to be employed.Just negotiating session keys with the 
ard does not su�
e, the en
ryptionand de
ryption of the data itself has to depend on the 
ard. In the next
hapters we will dis
uss how this might be a

omplished with the help of a
on
ept 
alled remotely keyed en
ryption (RKE).4 Remotely Keyed En
ryptionMany se
urity-relevant appli
ations store se
ret keys on a tamper-resistantdevi
e, a smart 
ard. Prote
ting the valuable keys is the 
ard's main purpose.Although in re
ent years some interesting 
ryptographi
 [Weis97℄ and manyvery dangerous hardware atta
ks [WTK97℄ have been mounteded, smart
ards provide mu
h higher se
urity than other storage systems.Two problems remain however with regards to using this devi
e for bulken
ryption.Performan
e ProblemThe �rst lies in the physi
al limitations of smart 
ards whi
h make themtypi
ally slow. Fortunately new 
ryptographi
 proto
ols make fast en
ryp-tion on a smart 
ard supported system possible. Small JAVA devi
es aretoo slow to provide an a

eptable bandwidth. Fortunately, remotely keyeden
ryption s
hemes are designed to allow �High-Bandwidth En
ryption withLow-Bandwidth Smart 
ards� [Blaz96℄. (This is a

omplished with the helpof a fast but untrusted host.)Export Restri
tionsThe se
ond major problem is posed by the restri
tions on en
ryption hard-ware. Our legally exported JAVA rings do o�er native support for en
ryption.Sin
e far fewer restri
tions regarding authenti
ation or signature tools exist,proto
ols have been developed by Lu
ks [Lu
k97℄ and Weis [Weis99b℄, that
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Figure 3: Remotely Keyed En
ryptionare well suited to use a built-in SHA-1 hash fun
tion (from a legal standpointa hash fun
tion is NOT an en
ryption fun
tion!) [LuWe99a℄ for bandwidth-greedy 
ryptographi
 servi
es like �le en
ryption.Main IdeasThe notion of remotely keyed en
ryption is due to Blaze [Blaz96℄. A remotelykeyed en
ryption s
heme (RKES) distributes the 
omputational burden fora blo
k 
ipher with large blo
ks between two parties, a host and a 
ard. Wethink of the host as being a 
omputer under the risk of being taken over byan adversary, while the 
ard 
an be a smart 
ard, prote
ting the se
ret key.The host knows plaintext and 
iphertext, but only the 
ard is entrustedwith the key.An RKES 
onsists of two proto
ols: the en
ryption proto
ol and thede
ryption proto
ol. Given a B-bit input, either to en
rypt or to de
rypt,su
h a proto
ol runs like this: The host sends a 
hallenge value to the 
ard,depending on the input, and the 
ard replies with a response value, dependingon both the 
hallenge value and the key.5 Se
urity ModelOne approa
h with very high pra
ti
al impli
ation is the analysis of di�erentatta
k s
enarios.5.1 Atta
ks on Stored DataThe one of the biggest problem for designing se
ure systems is the key man-agement. In the Internet age there is no �safe pla
e� to store the se
ret keys,



for a 
onne
ted 
omputer.If someone uses a Windows system there does not seem to be even atheoreti
al 
han
e of avoiding atta
ks over the network. Besides the knownatta
ks with �Trojan Horses� (e.g. Ba
k Ori�
e), whi
h are very hard toprevent, sin
e we have no open sour
es, not even a �randomized� swappingof memory to the hard disk 
an be prevented. If key bits or even onlyintermediate values 
an be lo
ated on the swap areas of the hard disk, these
urity of the system may be 
ompromised.Windows Memory Lo
k [Gutm99℄Win16: No se
urityWin95: VirtualLo
k() does nothingWinNT: VirtualLo
k() data is still swapped5.2 Atta
k S
enariosIn this se
tion we dis
uss our standpoint, that in open systems, smart 
ardsupported systems represents the only pra
ti
able solution for sensitive data.We want to dis
uss two main atta
k s
enarios. In an o�ine-atta
k theatta
ker gains physi
al 
ontrol of the harddisk. In the an online-atta
k theatta
ker takes 
ontrol of the host system and is able to 
ommuni
ate withthe smart 
ard.Se
urity Problems of a Software SolutionA software-only solution is not se
ure against both kind of atta
ks.O�ine Atta
k:If the atta
ker gains 
ontrol of the hard disk (e.g. steals the notebook) she
an try to perform a di
tionary atta
k. Most humans use passwords with avery poor entropy.In additional she 
an sear
h �random looking� data in the swap areas.Note that this strategy of �Playing Hide and Seek with Stored Keys� wassuggested by Shamir and Someren [ShSo99℄ and has helped to �nd the Mi-
rosoft �_NSAKEY�.



Figure 4: Looking for random data in a swap �le [ShSo99℄Online Atta
ks:If an atta
ker 
an take 
ontrol of the host during the en
ryption she 
an readthe se
ret key.Se
urity of Smart Card Supported SolutionsThe se
urity of smart 
ard supported systems is mu
h higher.O�ine Atta
ks:Given a su�
iently high entropy and length of the se
ret key in the smart
ard, a Brute For
e Atta
k seems to be infeasible. An atta
ker has to stealthe hard disk AND the smart 
ard AND 
ra
k the smart 
ard PIN.Online Atta
ks:The se
urity proves of our proto
ols show that an atta
ker who has 
ontrolof the host system 
an only read �les whi
h are de
rypted while she is in
ontrol.5.3 A 3 Line Se
urity ModelThis leads us to a 3 line se
urity model.� Hosts 
annot be se
ure.� Smart 
ards are pretty se
ure.� =) The se
ret key must NEVER leave the 
ard.Smart 
ards are also user-friendly. They provide a �The key in your hand�feeling and you 
an �
arry� your se
ret key with you.



6 Random Mapping Based Proto
olsThe theoreti
al publi
ations of Stefan Lu
ks ([Lu
k96℄, [Lu
k97℄) have stim-ulated the use of Luby/Ra
ko� 
onstru
tion in the 
ontext of smart 
ardsupported en
ryption proto
ols. Compared to other approa
hes these proto-
ols are based on a strong mathemati
al model and we 
an prove the marginsof se
urity.Further in [LuWe99a℄ Lu
ks and the author have shown implementationof en
ryption proto
ols with non-en
rypting smart 
ards. Has a big pra
ti
alimpa
t sin
e for non-en
rypting smart
ards there are mu
h less resri
tionsand �nally they are mu
h 
heaper than 
ards with �strong 
ryptography�.The RaMaRK En
ryption s
hemeIn this se
tion, we des
ribe the Random Mapping based Remotely Keyed(RaMaRK) En
ryption s
heme, whi
h uses several independent instan
es ofa �xed size random mapping f : f0; 1gb �! f0; 1gb. The s
heme is provablyse
ure if its building blo
ks are, i.e., it satis�es the requirements (i)�(iii)above, see [Lu
k97℄. Note that b must be large enough to make performing
lose to 2b=2 en
ryptions infeasible. We re
ommend to 
hooseb � 160:By ��� we denote the bit-wise XOR, though mathemati
ally any group op-eration would do the job as well.We use three building blo
ks:1. Key-dependent (pseudo-)random mappingsfi : f0; 1gb �! f0; 1gb:2. A hash fun
tion H : f0; 1g� �! f0; 1gb:H has to be 
ollision resistant.3. A pseudorandom bit generator (i.e. a �stream 
ipher�)S : f0; 1gb �! f0; 1g�:If the seed s 2 f0; 1gb is randomly 
hosen, the bits produ
ed by S(s)have to be indistinguishable from randomly generated bits.
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ryption proto
olIn addition to pseudorandomness, the following property is needed: If sis se
ret and atta
kers 
hoose t1, t2, . . . 2 f0; 1gb with ti 6= tj for i 6= jand re
eive outputs S(s� t1), S(s� t2), . . . , it has to be infeasible forthe atta
kers to distinguish these outputs from independently generatedrandom bit strings of the same size. Hen
e, su
h a 
onstru
tion behaveslike a random mapping f0; 1gb �! f0; 1gB�2b, though it is a
tually apseudorandom one, depending on the se
ret s.Based on these building blo
ks, we realize a remotely keyed en
ryptions
heme to en
rypt blo
ks of any size B � 3b, see �gure 5.We represent the plaintext by (P;Q;R) and the 
iphertext by (A;B;C),where (P;Q;R); (A;B;C) 2 f0; 1gb � f0; 1gb � f0; 1gB�2b. For the proto
oldes
ription we also 
onsider intermediate values T; U; V;X; Y; Z 2 f0; 1gb andI 2 f0; 1gB�2b. The en
ryption proto
ol works as follows:1. Given the plaintext (P;Q;R), the host sends P and Q to the 
ard.2. The 
ard 
omputes U = f1(P ) � Q and T = f2(U) � P , and sendsX = f3(T )� U to the host.3. The host 
omputes I = S(X)�R and Y = H(I), sends Z = X �Y tothe 
ard, and 
omputes C = S(Z)� I.4. The 
ard 
omputes V = f4(T ) � Z, and sends the two values A =f5(V )� T and B = f6(A)� V to the host.The de
ryption proto
ol is very similar (s. Fig. 5 or [Lu
k97℄).If the blo
k size B of the 
ipher it realizes is not too small 
ompared tothe parameter b, the RaMaRK s
heme is e�
ient. The 
ard itself operateson 2 � b bit data blo
ks, and both 3 � b bit of information enter and leave the
ard.



6.1 The Se
urity of RaMaRKLu
ks [Lu
k97℄ pointed out some weaknesses of Blaze's s
heme and gaveformal requirements for the se
urity of RKESs:(i) Forgery se
urity: If the adversary has 
ontrolled the host for q � 1intera
tions, she 
annot produ
e q plaintext/
iphertext pairs.(ii) Inversion se
urity: An adversary with (legitimate) a

ess to en
ryp-tion must not be able to de
rypt and vi
e versa.(iii) Pseudorandomness: The en
ryption fun
tion should behave pseudo-randomly for someone without a

ess to the 
ard, nor knowledge of these
ret key.While requirements (i) and (ii) restri
t the abilities of an adversary with a
-
ess to the smart 
ard, requirement (iii) is only valid for outsider adversarieswithout a

ess to the 
ard. If an adversary 
ould 
ompute forgeries or runinversion atta
ks, she 
ould easily distinguish the en
ryption fun
tion froma random one.6.2 Extended Se
urity ModelBlaze, Feigenbaum (AT&T) and Naor (Weizmann Institut) [BFN98℄ pub-lished re
ently a paper on the EUROCRYPT'98 whi
h has showed a newformal model for RKES, found a problem in the RaMaRK proto
ol and sug-gested a new RKES, that ful�lls the new se
urity model.BFN Model of Pseudorandomness of a RKESIt is theoreti
ally desirable that a 
ryptographi
 primitive always appears tobehave randomly to everyone without a

ess to the key. In any RKES, theamount of 
ommuni
ation between host and 
ard should be less than theinput length, otherwise the 
ard 
ould just do the 
omplete en
ryption on itsown. Sin
e (at least) a part of the input is not handled by the smart 
ard,and, for the same reasons, (at least) a part of the output is generated bythe host, an insider adversary 
an easily de
ide that the output generated byherself is not random.Blaze, Feigenbaum, and Naor [BFN98℄ found another way to de�ne thepseudorandomness of RKESs. Their formal de�nition is quite 
ompli
ated.It is based on the following s
enario:Adversary A is gains dire
t a

ess to the 
ard for a 
ertain amount oftime and makes a �xed number of intera
tions with the 
ard. Ones A has



lost dire
t a

ess to the 
ard, the en
ryption fun
tion should appear to behaverandomly, even to A.Se
urity Problems of the RaMaRK s
hemeRegarding the RaMaRK s
heme they pointed out that an adversary A whohas had a

ess to the 
ard and lost the a

ess again, 
an later 
hoose spe
ialplaintexts where A 
an predi
t a part of the 
iphertext. This makes it easyfor A to distinguish between RaMaRK en
ryption and en
rypting randomly.The intermediate value X depends only on the (P;Q)-part of the plain-text, and the en
ryption of the R-part depends only on X. If A 
hooses aplaintext (P;Q;R), having parti
ipated before in the en
ryption of (P;Q;R0),with R 6= R0, the adversary A 
an predi
t the C-part of the 
iphertext, butnot the P nor the Q part, 
orresponding to (P;Q;R) on her own.Thus, a

ording to the de�nition of [BFN98℄, the RaMaRK s
heme is notpseudorandom.6.3 �De
ryption� of the CiphertextsIn [BFN98℄Blaze, Naor and Feigenbaum mentioned another strong 
on
ern.They pointed out that in some 
ases it may be feasible to de
rypt parts ofthe 
iphertext after an online atta
k. It was shown in [Weis99b℄ that thisstatement does not apply.The authors of [BFN98℄ pointed that there is a possibility to atta
k �leswith the same 2b bit header.�However, be
ause the en
ryption key depends only on the�rst two plaintext blo
ks, an arbitrarily large set of messages allof whi
h start with the same two blo
ks will always be en
ryptedwith the same key. This is not a hypotheti
al situation: A set of�les in a 
omputer �le system, for example, might always startwith the same few bytes of stru
tural information.�The above des
ribes a known plaintext distinguishing atta
k, that is a
tuallyfeasible. The authors of [BFN98℄ 
ontinue:�An adversary that 
ontrols the host during the en
ryption orde
ryption of one �le in su
h a set 
ould subsequently de
ryptthe en
ryption of any �le in the set.�
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Figure 6: Improved RaMaRK [Weis99b℄We argue that this atta
k ist not feasible. Note that the se
ond intermediatekey Z (resp. X for de
ryption) depends on all bits of the plaintext (P;Q;R)(resp. 
iphertext (A;B;C)).Z = X � Y = X �H(I) = X �H� R � S(X)�Thus the knowledge of the intermediate value X (resp. Z) is not su�
ientfor a de
ryption of any �le of the mentioned set of �les.On the other hand it is a not satisfa
tory 
ryptographi
 property that anatta
ker 
an peel o� one of the two stream 
ipher en
ryptions if she knowsthe intermediate key X.C = I � S(Z) = R� S(X)� S(Z)7 The Improved RaMaRK proto
olBe
ause of the reasons dis
ussed in the last se
tion the author has suggesteda slight modi�
ation of the proto
ol on the host side [Weis99b℄.Proto
ol Modi�
ationWe want to make sure that also the intermediate keys X and Y depend onevery plaintext bit. Instead of P and Q we submitwhere h is a 
ryptographi
 hash fun
tion.The Improved RaMaRK s
heme is interfa
e-
ompatible with the unmod-i�ed RaMaRK s
heme. So no hardware modi�
ations to the smart 
ard arene
essary.



7.1 Chara
teristi
s and LimitationsIf we 
hoose a standard hash fun
tion with 160-bit output, a known plaintextatta
k against the pseudorandom property seems to be infeasible.A

ording to Lu
ks, a 
hosen plaintext atta
k in the BFN s
enario todistinguish the output of the proto
ol from a random output is still feasible.So even the improved RaMaRK s
heme does not meet the stronger se
uritymodel of [BFN98℄.Further more it is not possible to peel o� one stream 
ipher en
ryptionas dis
ussed in the last se
tion.The modi�
ation requires two expensive hash fun
tion 
alls for the bigblo
k B. We do not expe
t this to 
ause a problem for most appli
ationssin
e the main bottlene
k seems to be the 
ommuni
ation with the 
ard.8 A

elerated Remotely Keyed En
ryptionBlaze, Feigenbaum and Naor have published at Euro
rypt '98 a stronger se-
urity model for Remotely Keyed En
ryption s
hemes [BFN98℄. They alsopresent a new proto
ol in whi
h an atta
ker who gets the 
ontrol over thehost system for a 
ertain amount of time 
an not get a signi�
ant advantagefor the time after she lost 
ontrol. Further the pointed out some weaknessesin the RaMaRK proto
ol [Lu
k97℄. Some of these 
riti
s have been �xed by[Weis99b℄, but these modi�
ations do not ful�ll the stronger se
urity model.Stefan Lu
ks has improved the BFN proto
ol on the Fast Software En
ryp-tion 1999 by presenting the A

elerated Remotely Keyed En
ryption S
heme(ARK). To avoid 
onfusion we use the same notations as in [Lu
k99℄ whereever it is possible.8.1 Building Blo
ks and Se
urity AssumptionsIn [Lu
k99℄ was proven that the se
urity of the ARK s
heme is 
losely re-lated to the se
urity of the building blo
ks. In this se
tion we des
ribe therequirements for these blo
ks. We try to make these requirements as weakas possible. This strategy will provide a bigger margin of se
urity.8.2 Se
urity ParameterBy a we denote the blo
k size of the blo
k 
ipher E (usually 64 or 128 bit).Let b be the output size of the hash fun
tion H (usually 128 or 160 bit).These numbers are very important se
urity parameters. Espe
ially in most



pra
ti
al s
enarios a 64-bit blo
k 
ipher su
h as Triple-DES seems to be notappropriate.8.3 building blo
ksWe use the following building blo
ks for the ARK proto
ol.� an a-bit blo
k 
ipher EK : f0; 1ga ! f0; 1ga(e.g. AES:f0; 1g128 ! f0; 1g128, Rijndael, Two�sh, DEAL/SK)� a family of pseudorandom fun
tions FKf0; 1gb �! f0; 1ga(e.g. AES based CBC-MAC: f0; 1g160 ! f0; 1g128)� a hash fun
tion H : f0; 1g� �! f0; 1gb(e.g. SHA-1, RIPE-MD160: f0; 1g� �! f0; 1g160)� a length-preserving stream 
ipher S : f0; 1g� �! f0; 1g�,depending on an a-bit key.(e.g. ARCfour, AES/OFB)8.4 Se
urity AssumptionsThe se
urity assumptions are1. EK is a random permutation over f0; 1ga, and for K 6= K 0 the permu-tations EK and EK0 are independent.2. FKf0; 1gb �! f0; 1ga, is a random fun
tion, i.e., a table of 2b randomvalues in f0; 1ga. Similarly to above, two random fun
tions dependingon independently 
hosen keys are assumed to be independent.3. H is be 
ollision resistant, i.e., the adversary unable to �nd a pair(V; V 0) 2 f0; 1g� with V 6= V 0 and H(V ) 6= H(V 0) if V 6= V 0.4. SK is a length-preserving stream 
ipher, depending on a key K 2f0; 1ga. I.e., for every number n, every plaintext T 2 f0; 1gn, everyset of keys L = fK1; : : : ; Krg � f0; 1ga and every key K 2 f0; 1ga,K 62 L, the value SK(T ) 2 f0; 1gn is a random value, independent ofT , SK1(T ), . . . , SKn(T ).9 The ARK en
ryption s
hemeIn this se
tion we des
ribe the A

elerated Remotely Keyed (ARK) En
ryp-tion S
heme.



9.1 NotationWe use two pseudorandom permutationsE1; E2 over f0; 1gaand two pseudorandom fun
tionsF1; F2 : f0; 1gb �! f0; 1gaThe en
ryption fun
tion mapes any B-bit plaintexts ta B-bit 
iphertext. Thes
heme 
an use any blo
ksize B with B � a.We represent the plaintext by(P;Q) with P 2 f0; 1ga and Q 2 f0; 1gB�a:Similarly we represent the 
iphertext by(C;D) with C 2 f0; 1ga and D 2 f0; 1gB�a:For the proto
ol des
ription, we also 
onsider intermediate values X;Z 2f0; 1gb and Y 2 f0; 1ga. The en
ryption proto
ol works as follows:9.2 En
ryption Proto
olGiven the plaintext (P;Q)1. The host sends P and X := H(Q) to the 
ard.2. The 
ard responds Y := E1(P )� F1(X).3. The host 
omputes D := SY (C).4. The host sends Z := H(D) to the 
ard.5. The 
ard responds C := E2(Y � F2(Z)).The de
ryption proto
ol is very similar (s. Fig. 7 or [Lu
k99℄).9.3 Separation of En- and De
ryptionNote that if E1 and E2 are independent or if F1 and F2 are indepenent,the de
ryption proto
ol 
annot be used for en
ryption. This des
ribes somekind of authenti
ation me
hanism whi
h would usually require heavy-weightpubli
-key 
ryptography. We may produ
e 
ards whi
h 
an only be used foren
ryption or only for de
ryption � even if the 
ard holder tries to misusethe 
ards (but 
annot break their tamper-resistan
e). E.g., we 
an preventa re
eiver from faking a pay-tv program.
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Figure 7: A

elerated Remotely Keyed En
ryption [Lu
k99℄10 Appli
ation of RKE for IP pa
ket en
ryp-tionRKE en
ryption of IP tra�
 is not the same as en
ryption of a �le system orvideo stream, it has its own properties and requirements. For one, the blo
ksize is not �xed. IP tra�
 is handled a pa
ket at a time, so every en
ryptionblo
k typi
ally 
ontains exa
tly one IP pa
ket. Only when multiple pa
ketswait in the transmit queue the blo
k may 
onsist of multiple blo
ks. Elseappli
ations on both hosts 
ould experien
e una

eptable laten
ies or evendead lo
k. Clearly we would not want to make the en
ryption blo
k sizesmaller than the IP pa
ket sin
e: it does not give in
reased se
urity but
osts extra overhead.In most 
ases IP pa
kets will be smaller than the maximum pa
ket size ofthe underlying datalink in order to avoid fragmentation. For Ethernet LANenvironments this results in a maximum blo
k size of less than 1500 bytes.A se
ond 
onsideration is that internet tra�
 also puts strong require-ments on laten
y. The round trip time of the en
rypted 
onne
tion minimallyis four times the time the smart
ard needs to pro
ess a single blo
k.We have performed some timing measurements with the iButton (seeparagraph 12.4). Unfortunately we had to 
on
lude that the 
urrent iButtonrevision is prohibitively slow for remotely keyed en
ryption of internet tra�
.11 Restri
ting Usage of the iButtonA 
ommon prin
iple is to base authenti
ation on both something we own (inthis 
ase the iButton) and something we know (i.e. a pass phrase). This



ensures that simply stealing the token will not allow an adversary a

ess tothe prote
ted servi
es.11.1 The ISO7816 external authenti
ate 
ommandTraditionally the 'something we know' part has been implemented with an'enter PIN' 
ommand (
alled 'external authenti
ate' in ISO7816-4) providedby the hardware token: initially the token bars a

ess to its prote
ted 
om-mands, in our 
ase the 
al
SkeyID 
ommand. The appli
ation then issuesthe enter PIN 
ommand with a PIN given by the user. The token 
he
ks thePIN. If it is 
orre
t the token 
hanges its volatile state, allowing a

ess tothe prote
ted 
ommands. After a reset the state will be 'bar a

ess' again.In 
ase of an in
orre
t PIN the token de
reases3 a non volatile retry 
ounter,if the 
ounter rea
hes zero the token will not a

ept enter PIN 
ommandsanymore. Most implementations allow this retry 
ounter to be reset after anadministrative PIN is entered. Typi
ally this PIN is only know by the issuerof the token, not the end user.There are several drawba
ks to the use of the PIN feature:1. Fa
ilitates an o�ine atta
k. An adversary 
an try PINs (up till theretry 
ount limit) without anyone noti
ing sin
e the token gives imme-diate feedba
k about the 
orre
tness of the PIN.2. On
e a PIN is blo
ked due to too many failed enter PIN attempts, theuser either has to obtain a new token or (physi
ally) go to the tokenissuer to have the PIN unblo
ked again.3. Many implementations of PIN 
ontrolled a

ess in smart 
ards havebeen shown to 
ontain �aws, that allow one to dedu
e the 
orre
t PINor bypass the retry 
ounter [SHB97℄.4. The statefulness of the method might allow unauthorized appli
ationsa

ess to the prote
ted 
ommands. Example s
enario: the user starts atrusted appli
ation and gives it the PIN of the token. The appli
ationenters the PIN, but 
rashes or gets killed before it 
an reset the token.Now any appli
ation that 
an a

ess the token immediately has a

essto the prote
ted 
ommands, without the user even knowing.3a
tually any de
ent PIN implementation de
reases the 
ounter before the 
he
k andin
rease the 
ounter again if it is OK. This prevents an atta
k where one measures thepower 
onsumption of the 
ard to see if it tries to write to nonvolatile memory (power
onsumption rises dire
tly before the write). One then simply prevents the write operation(and thereby the 
ounter de
rement) by terminating power to the 
ard.



To 
ounter this, the button might request the PIN on every invo
ationof a prote
ted 
ommand. However, the ISO7816-4 standard does notprovide this, so few, if any, smart
ard implement su
h a feature.11.2 A naive alternativeWe would like to have a method that answers better to the a
tual goal:shielding the usage of the 
orre
t authenti
ation key rather than prote
tinga

ess to the 
al
SkeyID 
ommand.An initial e�ort to provide this, that also has been implemented in theiButton applet, is the following 
onstru
tion: the PIN P shall not be usedas a password but as a Key En
rypting Key (KEK) for the authenti
ationkey K. The smart
ard 
ontains the en
rypted authenti
ation key Q. So theSKEYID 
al
ulation be
omes:SKEY ID = prf(E�1P (Q); NijNr)The En
ryption algorithm of our 
hoi
e was the ever favorite ex
lusiveOR fun
tion, �rstly be
ause it's fast, easy and available everywhere (un-en
umbered by 
rypto export restri
tions). But another desirable feature isthat it allows to trivially 
hange the key without having to de
rypt the 
iphertext.A 
lear advantage of this s
heme is that the iButton does not 
ontain the
leartext value of either the se
ret key or the PIN. Also the implementation
ontains only a single exe
ution path, it does not have to de
ide whether thegiven PIN is 
orre
t. In e�e
t this 
ounters the atta
ks on PIN dedu
tionfrom subliminal paths. Also if an adversary manages to read the 
ontents ofthe button, for example by mi
roprobing, she has not yet obtained the key.Only after a su

essful PIN guessing atta
k the key be
omes available.The s
heme is in
ompatible with the retry 
ounter feature of the ISO7816PIN 
ommand: sin
e the button does not know the 
orre
t PIN it 
annotde
rease the 
ounter if the PIN is not 
orre
t. The purpose of the retry
ounter is to thwart attempts to obtain the PIN by guessing them until the
orre
t one is found. If we 
an ensure that an atta
ker 
an only verify if aPIN is 
orre
t if he has to 
onta
t one of the IPSe
 hosts ea
h try we do notneed a retry 
ounter in the smart
ard: the IPSe
 implementation 
an dete
tthe PIN guessing attempt and deal with it in a mu
h more �exible way than asmart
ard 
ould (for example by temporarily blo
king the a

ount, notifyinga se
urity o�
er, et
.).However the presented s
heme is not se
ure against o�ine PIN guessing.Obviously if an adversary knows a valid triplet {Non
e-I, Non
e-R, SKEYID}



Figure 8: Pass phrase keyed 
al
ulation of SKEYIDhe 
an verify a PIN by sending it and the non
es to the 
ard and 
he
kingwhether the 
ard returns the same SKEYID. The 
han
es for an adversaryto know su
h a triplet may be very slim, but mu
h more easily obtainableinformation will do to: the adversary does not a
tually need to know theSKEYID he just has to verify whether it is the 
orre
t one. Coin
identallythe I-digest and R-digest in the IKE ex
hange have been designed to ensurethe peer party has the 
orre
t SKEYID.An adversary 
an abuse this feature to 
he
k on '
andidate' SKEYIDs.The �rst half of this atta
k is online: he provokes (or waits for) one of theparties to initiate a key ex
hange. He then answers this initiation an takesthe role of the responder. He re
ords all ex
hanged data and 
uts o� the
ommuni
ation at the last step (sending the R-digest) sin
e he 
annot sendthe 
orre
t R-digest anyway. He now has all parameters ne
essary for the
al
ulation of the I-digest, ex
ept two: the SKEYID and the IDi1. Nowhe 
an perform the se
ond, o�ine, half of the atta
k: guess a PIN, let thesmart
ard generate the 
andidate SKEYID and verify it. For veri�
ation he
al
ulates all derived SKEYIDs from the 
andidate SKEYID and all obtainedparameters. Then he de
rypts IDi1, 
al
ulates the I-digest and 
ompares itto the (de
rypted) I-digest re
eived from the initiator. If the mat
h theSKEYID is 
orre
t and 
onsequently the PIN too.This atta
k enables the adversary to try as many PINs as ne
essary with-out having to 
onta
t one of the parties more than on
e, thereby 
ir
umvent-ing any online retry 
ounters.11.3 A potential improvementThe problem mentioned above is 
aused by the fa
t that an adversary 
an
ompletely spe
ify the input to the SKEYID 
al
ulation on the smart
ard.Therefore she 
an 'replay' the same IKE negotiation over and over again withdi�erent PINs.



In order to prevent su
h a replay we suggest the generation of an extranon
e by the smart
ard, to be in
orporated in the SKEYID 
al
ulation. TheSKEYID then be
omes:SKEY ID = prf(pre� sharedkey;NihjNisjNrhjNrs)where Nih is the initiators host non
e, Nis is the non
e generated bythe smart
ard of the initiator and Nrh and Nrs are the respe
tive respondernon
es. This s
heme is 
ompatible with the existing IKE proto
ol, we 
ansimply let Ni := Nih | Nis and Nr := Nrh | Nrs.However we have not yet performed a se
urity analysis for this 
onstru
t,further investigation is re
ommended.12 ImplementationMethod 1 (smart
ard �le system) and 2 (SKEYID 
al
ulation) have beenimplemented for FreeS/WAN 1.3 (ba
kporting should be simple). Be
auseof the many open issues surrounding the RKE approa
h, no attempt hasbeen made to implement it. All written 
ode is has been pla
ed under theGeneral Publi
 Li
ense.The implementation has been split into three parts: the iButton applet,iButton host 
ode and the FreeS/WAN integration 
ode. The iButton applethas been developed with the iButton IDE 1.01 running on the Bla
kdownJDK1.2.2pre4.The host 
ode has been written in C/C++ using the provided C-API.Having to run a 
omplete Java Runtime Environment for a single SKEYID
al
ulation is a bit overkill.12.1 The FreeS/WAN integration 
odeLu
kily FreeS/WAN 
ontains a single point where the SKEYID is derivedfrom the long term shared se
ret and the initiator and responder non
es:the fun
tion skeyid_preshared() in ipse
_doi.
 of the Pluto daemon. TheFreeS/WAN integration has been realized be pat
hing this �le. It has beendesigned to support both method 1 and 2 and to impose as little limitationson where the shared se
ret may be retrieved from or how the SKEYID mighthave been generated. Spe
i�
ally the pat
h is 
ompletely free of any userintera
tion 
ode. The pat
hed Pluto daemon 
he
ks whether the sharedse
ret de�ned in /et
/ipse
.se
rets starts with 'exe
 '. If so, the rest of these
ret is assumed to be a 
ommand Pluto has to exe
ute to obtain eitherthe real shared se
ret or the 
al
ulated SKEYID, whi
h one is up to the



CLA INS method des
riptionBB 0 setID initializes the button with the shared se
retBB 1 getParameter retrieves a parameter:P2 = 0: 
onne
tion nameP2 = 1: shared se
ret (debug version only!)BB 2 
al
Skeyid 
al
ulates SKEYID from given 
hallenge.P2 = 0: no password givenP2 = 1: use given passwordBB 3 
hangePassword 
hange password, i.e. o�set shared se
retwith given valueTable 1: instru
tions implemented in the iButton appletdis
retion of the 
ommand. Pluto passes the ne
essary parameters, su
h aslo
al and remote IP address, initiator and responder non
e, 
onne
tion nameand HMAC hash type, to the 
ommand by setting environment variables.The 
ommand returns the result by printing a single line to its standardoutput.The implementors of the exe
uted 
ommand are 
ompletely free in theway they intera
t with the user and hardware token. In the future a frame-work for this may be developed, that also in
ludes a more appealing alter-native interfa
e to other parts of FreeS/WAN, than 'vi /et
/ipse
.
onf' andthe /usr/lo
al/sbin/ipse
 
ommand.12.2 The iButton AppletThe IPSe
ID applet provides the smart
ard servi
es needed for SKEYID
al
ulation based authenti
ation. It implements the 4 instru
tions shown intable 1. The des
ribed implementation in
ludes the inse
ure alternative PINfeature des
ribed in paragraph 11.2.During the applet development we observed that the SHA1 
al
ulation onthe iButton is not fully 
onforming [SHA1℄. The digest the button generateshas the wrong byte order, that is the bytes are stored in order 32107654.....instead of 01234567...... iButton support 
on�rmed this behaviour, but didnot give a reason or indi
ation that it will be 
orre
ted in a next iButton�rmware release. Of 
ourse, a workaround was simple. Other than that, wedid not en
ounter any di�
ulties or problems.



12.3 Host 
odeThe iButton IDE version we used did not in
lude sour
e 
ode for the LinuxC-API, but the SPARC Solaris version 
ompiled without problem on Linux.With it we wrote some small C programs for setting the shared se
ret inthe iButton and for 
al
ulation of the SKEYID. They 
onsist of little morethan a wrapper around the iButton instru
tions. The '
al
Skeyid' program
onforms to the interfa
e des
ribed in paragraph 12.1, so it 
an be used in
ombination with FreeS/WAN. It does not perform any user intera
tion: ifthe iButton is not inserted the user is not noti�ed, but the IKE negotiationdire
tly fails instead. Clearly for a
tual deployment a more user friendlyversion is desirable.12.4 Some timing measurementsIn order to get some indi
ation of the speed of the button and its API,some timing tests have been performed. The test platform was an AMD K7Athlon 500MHz system 
ontaining 128MB with RedHat Linux 6.1 installed.The iButton had �rmware release 1.11.006 and 
ontained only the IPSe
IDapplet, in its �rst slot. The button was 
onne
ted to the 
omputer with theserial blue dot iButton re
eptor. The results of six test runs is show in table2. First button 
ommuni
ation initialization ('initJIB') and 
lose down('
leanup') were measured. The initialization turned out to be slower thanwe expe
ted: it takes almost 0.3 se
onds. The 
leanup is mu
h 
heaper and
ompletes within a millise
ond.Next we timed a very simple instru
tion: a 'ping' instru
tion, whi
hsimply e
hos ba
k the data (if any) sent as a parameter. A ping without datais the simplest instru
tion an iButton 
an exe
ute, it is an empty method.Yet it takes 0.67 se
onds to 
omplete. When we sent some data along (1bytes su�
ed) this in
rease to 1.16 se
onds. These values are mu
h higherthan we expe
ted based on experien
e with 
onventional smart
ards4.We also timed two of the instru
tions in the IPSe
ID applet: getParam-eter and 
al
SkeyID. The getParameter performs in the same range as theping 
ommand, not surprisingly as it does little more than returning a bytearray.The 
al
SkeyID instru
tion is mu
h more 
omplex as it needs to performtwo SHA1 hash 
al
ulations. Apparently this is a rather heavy job for theiButton, it takes almost 3.5 se
onds for the 
ompletion of the instru
tion. The4a typi
al Chipper or ChipKnip 
ard 
an handle over 20 'sele
t �le' 
ommands in ase
ond, ie. the 'ping time' is less than 50 milli se
onds.



a
tion 1 2 3 4 5 6 averageinitJIB 0.298 0.293 0.300 0.296 0.298 0.296 0.296
leanup 0.000 0.000 0.000 0.000 0.000 0.000 0.000Ping 0.670 0.670 0.670 0.670 0.670 0.670 0.670Ping w. data 1.160 1.160 1.160 1.160 1.160 1.160 1.160getParameter 0.96 0.97 0.97 0.96 0.96 0.97 0.97
al
SkeyID 3.47 3.44 3.44 3.45 3.44 3.45 3.45
al
SkeyID w. pass 3.45 3.45 3.45 3.46 3.45 3.45 3.45Table 2: time measurements (in se
onds) of 6 runs of iButton operationsvariant of the instru
tion whi
h takes a 64 byte password as extra parameteris not signi�
antly slower.A

ording to iButton support <jibsupport�dalsemi.
om> �1.5-2.0 se
-onds per hit are normal.�.13 Con
lusionsStoring long term se
rets for IPSe
 in a hardware token like the iButton 
an
onsiderably improve the se
urity of the VPN. The Internet Key Ex
hange(IKE) permits storage of the long term keys in a safer pla
e than on harddisk without 
hanges to the proto
ol.Remotely Keyed En
ryption is a powerful 
on
ept for smart
ard enableden
ryption that 
opes with one of the major problems for appli
ation ofsmart
ard in bulk en
ryption: the low bandwidth of the 
ard. Fast and se
ureRKE proto
ols are available that work around another, politi
al problem:export restri
tions on smart
ards that implement strong en
ryption.The iButtons Java Card te
hnology gives smart
ard appli
ation devel-opers mu
h more freedom and �exibility over 
onventional smart
ard te
h-nology. It enabled us to qui
kly build a small smart
ard applet for se
ureauthenti
ation of IPSe
 key ex
hanges, something not doable with 
onven-tional 
ards.The iButton is a relatively slow devi
e: it takes more than 3 se
ondsfor an HMAC 
al
ulation. This prohibits the appli
ation of Remotely KeyedEn
ryption proto
ols, be
ause the resulting laten
y of the en
rypted IP tra�
will be too high to be usable.



14 Future WorkThe proposed methods for storage of IPSe
's long term keys in iButtons 
anbe extended to other hardware tokens that support the SHA1 algorithm.For Java Card 
ompliant tokens the adaption should be trivial. Anotherextension is addition of support for IKE based on publi
 keys. A method 1implementation is simple, for method 2 one requires publi
 key operations inthe token, so this will require export restri
ted tokens.Furthermore, it should be easy to apply the presented methods and im-plementations to other IPSe
 implementations, su
h as NIST's Linux IPSe
or Free- and NetBSD's IPSe
 implementation.Of 
ourse a feasible method 3 solution remains an interesting subje
ttoo. This requires a token that is fast enough to keep the laten
y withinreasonable limit, a task the 
urrent iButton revision 
annot handle.Lastly we have implemented but the basi
s of iButton enabled key ne-gotiation. For a
tual use, a good user interfa
e has to be built. CurrentlyFreeS/WAN itself is la
king a user friendly interfa
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