
1 IntrodutionIPSe is an open draft standard for paket level seurity in IP networks. Itintends to provide protetion against eavesdropping and data tampering bythird parties, features the urrent IP infrastruture is desparately laking.IPSe is a standard part of the IPv6 protool, therefore its presene in theinfrastruture of the internet will be pervasive one IPv6 fully is enrolled.But IPSe is not restrited to IPv6, urrently most implementations run onIPv4.IPSe is under ative development by the IETF IPSe working group.At least partly beause the IPSe standards are the result of a ommitteethe standards tend to be overly omplex and ontain way to many featuresand options. Ferguson and Shneier evaluated the IPSe spei�ations in[FeSh00℄. Their biggest omplaint against IPSe was the aforementionedomplexity. Ironially in this paper they both reommend against usingIPSe and in favor of using IPSe. The dilemma is aused by the fat thatall alternatives to IPSe are far worse (seurity wise).FreeS/WAN is an open soure implementation of IPSe for the Linux op-erating system. John Gilmore of the Eletroni Frontier Foundation startedthe projet to answer his self set goal to protet internet tra� against passivewiretapping. The ode is under ative development by a team of volunteersfrom all over the world. Unlike other IPSe implementations FreeS/WANdoes not su�er from the ryptography export regulations of the US: all odeis maintained in a free ountry outside the US and the development teampays signi�ant attention to staying 'export lean'1.The basi omponents of FreeS/WAN are depited in �gure 1, whihshows two hosts, West Gate and East Gate, that ommuniate with eahother via IPSe. Typially at least one of the mahines is a gateway to aninternal subnet. Together the gates and the subnet reate one Virtual PrivateNetwork (VPN) that is seurely interonneted over the internet.For IPSe the IP onnetion arries two types of tra�:� ESP, whih stands for Enrypted Seurity Payload. This is the en-rypted IP tra� between the hosts� IKE, whih stands for Internet Key Exhange. This the protool bywhih session keys of ESP are exhanged.1Amongst others this means aepting no soure ode from Amerians. The US haverelaxed their export regulations January 2000 and now allow open soure projets to exportstrong ryptography. Beause of that the team may relax its poliy in the near future.

Figure 1: FreeS/WAN omponentsThe KLIPS module inside the Linux kernel performs the enryption of theIP data to ESP and the deryption of ESP to IP data. The session keyexhanges are handled by a user spae proess alled Pluto. Pluto has a listof long term keys to authentiate these key exhanges. Currently these longterm keys are stored on harddisk. The goal of this paper is to investigateother safer means to store these serets.2 Key management in IPSeFreeS/WAN has two keying methods: manual keying and automati keying.With manual keying the session key itself is spei�ed in the on�guration �le(/et/ipse.onf). Upon initialization FreeS/WAN passes this key diretly tothe kernel level IP enryption module. FreeS/WAN performs no key man-agement at all, that burden is left to the administrator. This keying methodis only intended for debugging purposes: sine there is no key managementit is onvenient for heking the setup without worrying whether both gatesuse the same session key. However, it is not very seure: anyone who anobtain the key an derypt all past and future ommuniation simply byeavesdropping.The seond method, automati keying, is more sophistiated: using long

term keys, a daemon proess, the Pluto daemon, regularly negotiates sessionkeys with its peer. Tra� will never be enrypted with the long term keyonly with the session keys. IPSe peers negotiate their session keys with theInternet Key Exhange protool [IKE℄.2.1 the Internet Key ExhangeIKE is an elaborate protool for key exhanges, with multiple multiple modesand phases. IKE de�nes key negotiation based on pre-shared serets, digitalsignatures and publi key enryption. FreeS/WANs IKE implementation,the Pluto daemon, has supported the pre-shared seret method sine its �rstrelease. Reently support for key negotiation based on publi key enryptionhas been added.IKE uses the Di�e-Hellman key exhange [DH℄ to establish a sharedseret between the two peers. With Di�e-Hellman no pre-shared key isneessary to negotiate this seret. But what good is a negotiated seretif you don't know with whom you share it? This is where the pre-sharedseret or publi key rypto key pairs ome into play: with these the IKEdaemons eah alulate an authentiation ode, alled the initiator digestand responder digest respetively.The exat formula's for shared serets based session key alulation aregiven in algorithm 1. Several keys are de�ned:� SKEY ID is the primary session key, from whih all other session keysare derived.� SKEY IDD is keying material used to derive keys for seurity serviesduring phase 2 of IKE.� SKEY IDA is the keying material used by the parties of the exhangefor message integrity.� SKEY IDE is the keying material used by the parties of the exhangeto protet the on�dentiality of messages.The 'prf' funtion in these alulations denotes a pseudo-random funtion'.IKE atually uses the HMAC-SHA-1 onstrution by default, whih providesthe seurity we need, if the hash funtion SHA-1 is seure.The alulations use the following parameters:� Ni and Nr are two nones generated by the initiator and responderrespetively.

Algorithm 1 alulation of session keys and digests in IKE using sharedserets.SKEY ID = prf(pre� shared� key;NijNr)SKEY IDD = prf(SKEY ID; girjCKYIjCKYRj0)SKEY IDA = prf(SKEY ID; SKEY IDD; girjCKYIjCKYRj1)SKEY IDE = prf(SKEY ID; SKEY IDD; girjCKYI jCKYRj2)Idigest = prf(SKEY ID; gijgrjCKYI jCKYRjSAibjIDi1b)Rdigest = prf(SKEY ID; grjgijCKYRjCKYIjSAibjIDr1b)� gi, gr and gir are respetively the Di�e-Hellman publi values of theinitiator and responder and the exhanged Di�e-Hellman seret.� CKYI and CKYR are the ookies generated by the initiator and re-sponder that identify the Seure Assoiation.� SAib is the entire body of the 'SA payload'. This payload ontains theDomain of Interpretation (DOI) and the enryption proposals amongstothers.IKE exhanges these parameters in the following protool �ow:Initiator ResponderSA �! � SAgi; Ni �! � gr; NrE(IDi1; Idigest) �! � E(IDr1; Rdigest)The last two messages are enrypted with a key derived from SKEY IDE,thus shielding the IDs of both parties from eavesdropping.An important property of the IKE protool is Perfet Forward Serey(PFS). This is the notion that ompromise of a single key will permit a-ess only to data proteted by a single key[IKE℄. In e�et this means thatompromise of the long term key (the pre-shared seret) will not make thesystem vulnerable to passive attaks: from this key and eavesdropped om-muniation alone the attaker annot dedue the data enryption keys of a

session. Knowledge of the long term keys allows an ative man in the middleattak however. Of ourse with knowledge of the long term keys an attakeralso an pretend to be one of the legitimate parties and initiate a seureonnetion.Certainly the protetion of the automati keying mehanism is muh bet-ter than the seurity of the manual keying method, but nevertheless ompro-mise of the long term keys has serious seurity impliations.3 Methods for improving the seurity of sharedseretsTo improve the seurity of FreeS/WAN against ative attaks we need tobetter protet our long term keys. Sure, Linux' standard �le system, ext2,has aess ontrols that an prevent anyone but the root user to read theIPSe serets �le (/et/ipse.serets). But that will not help very muh onesomeone has haked the root aount or the mahine has been stolen. Or adisgruntled (ex)employee with root privileged may have made a opy of the�le.3.1 Hardware tokensSmartards are a popular form of hardware tokens. In the Netherlands aloneover 26 million smartards2 are in use, on a population of 16 million peo-ple. Smartards basially are fully integrated omputers (CPU, ROM, RAMand I/O) in a single hip glued on a redit ard format plasti ard. ISOhas de�ned standards for smartards in ISO7816, ranging from physial andeletrial harateristis in part 1 and 2, data ommuniation in part 3, ap-pliation ommand in part 4, to servies in part 5, 6 and 7. Almost all ardsimplement (at least part of) the ommand set desribed in ISO7816-4, parts5 and higher often are not implemented. They o�er a simple hierarhial �lesystem with aess protetion (with passwords or hallenge/response) andontent authentiation (through keyed Message Authentiation Codes).Mostly beause of politial reasons, smartards traditionally have beenvery restritive: it was not possible to upload your own programs on yourard, even writing your own keys on the ard often was limited.Most ard manufaturers now also o�er Java Card ompliant smartards.Java Card tehnology, introdued by SUN Mirosystems, o�ers muh more213.400.000 Chipknip ards [Ipay℄ + 7.000.000 hipper ards [Chip℄ + 6.000.000 GSMSIM ards.

freedom: developers an write little programs (applets) that an be loadedin the ard and exeuted. Some other bene�ts Sun mentions are:Platform IndependeneJava Card tehnology applets that omply with the Java Card API spei�a-tion will run on ards developed using Java Card Appliation Environment.This way developers an reuse the same applet with ards from di�erentvendors.Multi-Appliation CapableMultiple appliations an run on a single ard. The Java runtime environ-ment in the ard ensures that multiple appliations an seurely reside andexeute on the same ard.Post-Issuane of AppliationsAppliations an be installed after the ard has been issued. This enablesard issuers to dynamially respond to their ustomer's hanging needs.FlexibilityThe objet oriented methodology of the Java Card tehnology provides �ex-ibility in programming smartards.Compatibility with Existing Smartard StandardsThe Java Card API is ompatible with formal international standards suhas ISO7816 and industry-spei� standards (e.g. EMV).3.2 The Dallas Semiondutor iButtonThe iButton is a standard JAVA �ard� in a 16 mm, stainless steel ase. Someaessories enable one to to wear the iButton, like metal ards, wathes, or�nger rings. Note that the �wearability� is not a a funky feature as userfriendly onstrutions are absolutely vital for seure systems.�While ards are �ne for playing poker, they're not a safe plaeto keep a fragile hip that de�nes your digital identity.� [Dallas℄

The unusual form of the i-Button provides reasonable seurity against hard-ware attaks, ompared to the seurity of ordinary hip ards [WTK97℄.Furthermore the ase provides lear visual evidene of tampering.Dallas Semiondutor [Dallas℄ gives the following summary of the physialseurity:� Armored with stainless steel for the hard knoks of everyday use� Wear tested for 1 million insertions and more than 10 years of life� ESD protetion is more than 25,000 volts for wash-and-wear depend-ability� Three-layer metal tehnology and �ip-hip bonding form barriades toprotet data� Opening of the physial perimeter generates a tamper response� Tamper response auses rapid zeroization of NV SRAM to preventdislosure of seure data.The 6 KB of SRAM inluded on the monolithi hip has been speiallydesigned so that it will rapidly erase its ontents in the event of an intrusion.The following instanes are treated as intrusions:� Opening the ase� Removing the metallurgially bonded substrate barriade� Miro-probing the hip� Subjeting the hip to temperature extremes.There are several design elements against Di�erential Fault Analysis. Thusif exessive voltage is enountered, the sole I/O pin is designed to fuse. Thiswill render the hip inoperable.The National Institute of Standards (NIST) and the Canadian SeurityEstablishment (CSE) have validated a version of the rypto i-Button for pro-tetion of sensitive, unlassi�ed information. FIPS 140-1 validation assuresgovernment agenies that the produts provide a trusted, physially seuremodule to properly protet seure information.Aording to Dallas Semiondutor, over 27 million i-Buttons are ur-rently (Nov. 1999) in irulation.

Figure 2: the Dallas Semiondutor iButton and Blue Dot Reeptor3.3 The smartard �le system methodThe simplest proposed method to let the serets reside in a hardware token isto use the token as a mobile private �le system. The Pluto daemon will simplyread out the long term key from the button when it needs it instead of from/et/ipse.serets. This ould be implemented even without modi�ationof the Pluto implementation: a new 'smartard' �le system in the Linuxkernel ould mount the data �les from the smartard into the normal virtual�le system hierarhy. Pluto then an simply read the keys like a normal�le, without even knowing the keys are not stored on hard disk. Itoi, e.a.explored the idea for a 'UNIX smartard �le system in [IHR98℄. They builtan implementation for OpenBSD and whih is now suessfully used by theauthors to store their private Seure Shell (SSH) keys on smartards.This method learly is an improvement over storing keys on the hard disk,but when ard is inserted the key still is vulnerable.3.4 SKEYID alulation on the ard methodA better seurity model has the following minimum requirements for theprotool[Weis00℄:� The seret master key must never leave the ard.� The protool has to be seure against a master key reovery attak.� It's not feasible to derypt tra� without breaking the host ipher orthe pseudorandom funtion on the ard.

Furthermore it is highly preferable that the protool not only �ts within theIPSe framework but is ompatible with it on the wire level: the protoolshould allow interoperability with other IPSe implementations without theirmodi�ation.The IPSe working group has not made reommendations on seure stor-age of IPSe's serets. However, the session key alulations IKE de�nesprovide a logial approah: IKE uses the long term key at only one point, inthe alulation of the SKEYID. It makes sense to perform this in the ardand all further session key alulations in the host. Calulating SKEY IDD,SKEY IDA; et. in the ard does not improve the seurity of the sharedseret and requires extra CPU resoures of the relatively slow smartard.The seurity of this sheme relies on the seurity of the HMAC alulation.It shall not be possible to reover the seret key in a hosen plaintext attak,ie. against an adversary that an send arbitrary nones to the ard and readbak the results. The seurity of HMAC relies on relatively weak assumptionson the underlying hash funtion. IKE uses SHA1 as underlying hash, whihsatis�es these assumptions. The seurity of HMAC-SHA1 stands, there isurrently no known attak against it.3.5 Enryption of tra� by the ard itselfIf we use a smartard only to negotiate session keys via IKE, an IPSe on-netion an stay open after a user has removed the ard: as long as thesession key does not expire there is no need for an SKEYID alulation.More seure behaviour would be that the host an ommuniate throughIPSe onnetion only when the ard is aessible for the host. From a userperspetive this also is more intuitive: the user an be assured that no IPSeommuniation is possible when the smartard is not inserted.In this model we require that:1. The reeiving host an verify that a reeived paket was sent when thesending host had aess to the smartard (so it an disard paket forwhih this does not hold).2. The reeiving host annot derypt reeived data pakets without aessto the smartard.One might try to for�ll these requirements by bringing down the IPSe on-netion when the smartard is removed. To reestablish the onnetion IKEwould need to renegotiate session keys, whih it annot do without the ard.In general this feature is a good addition to basi smartard enabled SKEYID

alulation: it allows the user to regard its smartard as an ignition key. Cardinserted means onnetivity, ard not inserted means no onnetivity.However, this method does not stritly onform to our requirements. Thesending host an send pakets that will be aept by the reipient even whenit does not have aess to the smartard, it simply must not bring down theonnetion when the ard is removed. Likewise the host an keep deryptingdata it reeives. The peer host is dependent on 'deent' behaviour by itsommuniating partner.To enfore the requirements a more seure method has to be employed.Just negotiating session keys with the ard does not su�e, the enryptionand deryption of the data itself has to depend on the ard. In the nexthapters we will disuss how this might be aomplished with the help of aonept alled remotely keyed enryption (RKE).4 Remotely Keyed EnryptionMany seurity-relevant appliations store seret keys on a tamper-resistantdevie, a smart ard. Proteting the valuable keys is the ard's main purpose.Although in reent years some interesting ryptographi [Weis97℄ and manyvery dangerous hardware attaks [WTK97℄ have been mounteded, smartards provide muh higher seurity than other storage systems.Two problems remain however with regards to using this devie for bulkenryption.Performane ProblemThe �rst lies in the physial limitations of smart ards whih make themtypially slow. Fortunately new ryptographi protools make fast enryp-tion on a smart ard supported system possible. Small JAVA devies aretoo slow to provide an aeptable bandwidth. Fortunately, remotely keyedenryption shemes are designed to allow �High-Bandwidth Enryption withLow-Bandwidth Smart ards� [Blaz96℄. (This is aomplished with the helpof a fast but untrusted host.)Export RestritionsThe seond major problem is posed by the restritions on enryption hard-ware. Our legally exported JAVA rings do o�er native support for enryption.Sine far fewer restritions regarding authentiation or signature tools exist,protools have been developed by Luks [Luk97℄ and Weis [Weis99b℄, that

plaintext

ciphertext

cardhost

Figure 3: Remotely Keyed Enryptionare well suited to use a built-in SHA-1 hash funtion (from a legal standpointa hash funtion is NOT an enryption funtion!) [LuWe99a℄ for bandwidth-greedy ryptographi servies like �le enryption.Main IdeasThe notion of remotely keyed enryption is due to Blaze [Blaz96℄. A remotelykeyed enryption sheme (RKES) distributes the omputational burden fora blok ipher with large bloks between two parties, a host and a ard. Wethink of the host as being a omputer under the risk of being taken over byan adversary, while the ard an be a smart ard, proteting the seret key.The host knows plaintext and iphertext, but only the ard is entrustedwith the key.An RKES onsists of two protools: the enryption protool and thederyption protool. Given a B-bit input, either to enrypt or to derypt,suh a protool runs like this: The host sends a hallenge value to the ard,depending on the input, and the ard replies with a response value, dependingon both the hallenge value and the key.5 Seurity ModelOne approah with very high pratial impliation is the analysis of di�erentattak senarios.5.1 Attaks on Stored DataThe one of the biggest problem for designing seure systems is the key man-agement. In the Internet age there is no �safe plae� to store the seret keys,

for a onneted omputer.If someone uses a Windows system there does not seem to be even atheoretial hane of avoiding attaks over the network. Besides the knownattaks with �Trojan Horses� (e.g. Bak Ori�e), whih are very hard toprevent, sine we have no open soures, not even a �randomized� swappingof memory to the hard disk an be prevented. If key bits or even onlyintermediate values an be loated on the swap areas of the hard disk, theseurity of the system may be ompromised.Windows Memory Lok [Gutm99℄Win16: No seurityWin95: VirtualLok() does nothingWinNT: VirtualLok() data is still swapped5.2 Attak SenariosIn this setion we disuss our standpoint, that in open systems, smart ardsupported systems represents the only pratiable solution for sensitive data.We want to disuss two main attak senarios. In an o�ine-attak theattaker gains physial ontrol of the harddisk. In the an online-attak theattaker takes ontrol of the host system and is able to ommuniate withthe smart ard.Seurity Problems of a Software SolutionA software-only solution is not seure against both kind of attaks.O�ine Attak:If the attaker gains ontrol of the hard disk (e.g. steals the notebook) shean try to perform a ditionary attak. Most humans use passwords with avery poor entropy.In additional she an searh �random looking� data in the swap areas.Note that this strategy of �Playing Hide and Seek with Stored Keys� wassuggested by Shamir and Someren [ShSo99℄ and has helped to �nd the Mi-rosoft �_NSAKEY�.

Figure 4: Looking for random data in a swap �le [ShSo99℄Online Attaks:If an attaker an take ontrol of the host during the enryption she an readthe seret key.Seurity of Smart Card Supported SolutionsThe seurity of smart ard supported systems is muh higher.O�ine Attaks:Given a su�iently high entropy and length of the seret key in the smartard, a Brute Fore Attak seems to be infeasible. An attaker has to stealthe hard disk AND the smart ard AND rak the smart ard PIN.Online Attaks:The seurity proves of our protools show that an attaker who has ontrolof the host system an only read �les whih are derypted while she is inontrol.5.3 A 3 Line Seurity ModelThis leads us to a 3 line seurity model.� Hosts annot be seure.� Smart ards are pretty seure.� =) The seret key must NEVER leave the ard.Smart ards are also user-friendly. They provide a �The key in your hand�feeling and you an �arry� your seret key with you.

6 Random Mapping Based ProtoolsThe theoretial publiations of Stefan Luks ([Luk96℄, [Luk97℄) have stim-ulated the use of Luby/Rako� onstrution in the ontext of smart ardsupported enryption protools. Compared to other approahes these proto-ols are based on a strong mathematial model and we an prove the marginsof seurity.Further in [LuWe99a℄ Luks and the author have shown implementationof enryption protools with non-enrypting smart ards. Has a big pratialimpat sine for non-enrypting smartards there are muh less resritionsand �nally they are muh heaper than ards with �strong ryptography�.The RaMaRK Enryption shemeIn this setion, we desribe the Random Mapping based Remotely Keyed(RaMaRK) Enryption sheme, whih uses several independent instanes ofa �xed size random mapping f : f0; 1gb �! f0; 1gb. The sheme is provablyseure if its building bloks are, i.e., it satis�es the requirements (i)�(iii)above, see [Luk97℄. Note that b must be large enough to make performinglose to 2b=2 enryptions infeasible. We reommend to hooseb � 160:By ��� we denote the bit-wise XOR, though mathematially any group op-eration would do the job as well.We use three building bloks:1. Key-dependent (pseudo-)random mappingsfi : f0; 1gb �! f0; 1gb:2. A hash funtion H : f0; 1g� �! f0; 1gb:H has to be ollision resistant.3. A pseudorandom bit generator (i.e. a �stream ipher�)S : f0; 1gb �! f0; 1g�:If the seed s 2 f0; 1gb is randomly hosen, the bits produed by S(s)have to be indistinguishable from randomly generated bits.

f
1

f
2

f
3

U

f
1

f
2

f
3

U

S SH

I

P

Q

T

V

A

B

f
5

f
64

f

X Z

Y

CRFigure 5: The RaMaRK enryption protoolIn addition to pseudorandomness, the following property is needed: If sis seret and attakers hoose t1, t2, . . . 2 f0; 1gb with ti 6= tj for i 6= jand reeive outputs S(s� t1), S(s� t2), . . . , it has to be infeasible forthe attakers to distinguish these outputs from independently generatedrandom bit strings of the same size. Hene, suh a onstrution behaveslike a random mapping f0; 1gb �! f0; 1gB�2b, though it is atually apseudorandom one, depending on the seret s.Based on these building bloks, we realize a remotely keyed enryptionsheme to enrypt bloks of any size B � 3b, see �gure 5.We represent the plaintext by (P;Q;R) and the iphertext by (A;B;C),where (P;Q;R); (A;B;C) 2 f0; 1gb � f0; 1gb � f0; 1gB�2b. For the protooldesription we also onsider intermediate values T; U; V;X; Y; Z 2 f0; 1gb andI 2 f0; 1gB�2b. The enryption protool works as follows:1. Given the plaintext (P;Q;R), the host sends P and Q to the ard.2. The ard omputes U = f1(P) � Q and T = f2(U) � P , and sendsX = f3(T)� U to the host.3. The host omputes I = S(X)�R and Y = H(I), sends Z = X �Y tothe ard, and omputes C = S(Z)� I.4. The ard omputes V = f4(T) � Z, and sends the two values A =f5(V)� T and B = f6(A)� V to the host.The deryption protool is very similar (s. Fig. 5 or [Luk97℄).If the blok size B of the ipher it realizes is not too small ompared tothe parameter b, the RaMaRK sheme is e�ient. The ard itself operateson 2 � b bit data bloks, and both 3 � b bit of information enter and leave theard.

6.1 The Seurity of RaMaRKLuks [Luk97℄ pointed out some weaknesses of Blaze's sheme and gaveformal requirements for the seurity of RKESs:(i) Forgery seurity: If the adversary has ontrolled the host for q � 1interations, she annot produe q plaintext/iphertext pairs.(ii) Inversion seurity: An adversary with (legitimate) aess to enryp-tion must not be able to derypt and vie versa.(iii) Pseudorandomness: The enryption funtion should behave pseudo-randomly for someone without aess to the ard, nor knowledge of theseret key.While requirements (i) and (ii) restrit the abilities of an adversary with a-ess to the smart ard, requirement (iii) is only valid for outsider adversarieswithout aess to the ard. If an adversary ould ompute forgeries or runinversion attaks, she ould easily distinguish the enryption funtion froma random one.6.2 Extended Seurity ModelBlaze, Feigenbaum (AT&T) and Naor (Weizmann Institut) [BFN98℄ pub-lished reently a paper on the EUROCRYPT'98 whih has showed a newformal model for RKES, found a problem in the RaMaRK protool and sug-gested a new RKES, that ful�lls the new seurity model.BFN Model of Pseudorandomness of a RKESIt is theoretially desirable that a ryptographi primitive always appears tobehave randomly to everyone without aess to the key. In any RKES, theamount of ommuniation between host and ard should be less than theinput length, otherwise the ard ould just do the omplete enryption on itsown. Sine (at least) a part of the input is not handled by the smart ard,and, for the same reasons, (at least) a part of the output is generated bythe host, an insider adversary an easily deide that the output generated byherself is not random.Blaze, Feigenbaum, and Naor [BFN98℄ found another way to de�ne thepseudorandomness of RKESs. Their formal de�nition is quite ompliated.It is based on the following senario:Adversary A is gains diret aess to the ard for a ertain amount oftime and makes a �xed number of interations with the ard. Ones A has

lost diret aess to the ard, the enryption funtion should appear to behaverandomly, even to A.Seurity Problems of the RaMaRK shemeRegarding the RaMaRK sheme they pointed out that an adversary A whohas had aess to the ard and lost the aess again, an later hoose speialplaintexts where A an predit a part of the iphertext. This makes it easyfor A to distinguish between RaMaRK enryption and enrypting randomly.The intermediate value X depends only on the (P;Q)-part of the plain-text, and the enryption of the R-part depends only on X. If A hooses aplaintext (P;Q;R), having partiipated before in the enryption of (P;Q;R0),with R 6= R0, the adversary A an predit the C-part of the iphertext, butnot the P nor the Q part, orresponding to (P;Q;R) on her own.Thus, aording to the de�nition of [BFN98℄, the RaMaRK sheme is notpseudorandom.6.3 �Deryption� of the CiphertextsIn [BFN98℄Blaze, Naor and Feigenbaum mentioned another strong onern.They pointed out that in some ases it may be feasible to derypt parts ofthe iphertext after an online attak. It was shown in [Weis99b℄ that thisstatement does not apply.The authors of [BFN98℄ pointed that there is a possibility to attak �leswith the same 2b bit header.�However, beause the enryption key depends only on the�rst two plaintext bloks, an arbitrarily large set of messages allof whih start with the same two bloks will always be enryptedwith the same key. This is not a hypothetial situation: A set of�les in a omputer �le system, for example, might always startwith the same few bytes of strutural information.�The above desribes a known plaintext distinguishing attak, that is atuallyfeasible. The authors of [BFN98℄ ontinue:�An adversary that ontrols the host during the enryption orderyption of one �le in suh a set ould subsequently deryptthe enryption of any �le in the set.�

f
1

f
2

f
3

U

f
1

f
2

f
3

U

S SH

I

S SHS SHS SHS SH

h

Q

T

V B

f
5

f
64

f

X Z

Y

CR

P

h

A

Figure 6: Improved RaMaRK [Weis99b℄We argue that this attak ist not feasible. Note that the seond intermediatekey Z (resp. X for deryption) depends on all bits of the plaintext (P;Q;R)(resp. iphertext (A;B;C)).Z = X � Y = X �H(I) = X �H� R � S(X)�Thus the knowledge of the intermediate value X (resp. Z) is not su�ientfor a deryption of any �le of the mentioned set of �les.On the other hand it is a not satisfatory ryptographi property that anattaker an peel o� one of the two stream ipher enryptions if she knowsthe intermediate key X.C = I � S(Z) = R� S(X)� S(Z)7 The Improved RaMaRK protoolBeause of the reasons disussed in the last setion the author has suggesteda slight modi�ation of the protool on the host side [Weis99b℄.Protool Modi�ationWe want to make sure that also the intermediate keys X and Y depend onevery plaintext bit. Instead of P and Q we submitwhere h is a ryptographi hash funtion.The Improved RaMaRK sheme is interfae-ompatible with the unmod-i�ed RaMaRK sheme. So no hardware modi�ations to the smart ard areneessary.

7.1 Charateristis and LimitationsIf we hoose a standard hash funtion with 160-bit output, a known plaintextattak against the pseudorandom property seems to be infeasible.Aording to Luks, a hosen plaintext attak in the BFN senario todistinguish the output of the protool from a random output is still feasible.So even the improved RaMaRK sheme does not meet the stronger seuritymodel of [BFN98℄.Further more it is not possible to peel o� one stream ipher enryptionas disussed in the last setion.The modi�ation requires two expensive hash funtion alls for the bigblok B. We do not expet this to ause a problem for most appliationssine the main bottlenek seems to be the ommuniation with the ard.8 Aelerated Remotely Keyed EnryptionBlaze, Feigenbaum and Naor have published at Eurorypt '98 a stronger se-urity model for Remotely Keyed Enryption shemes [BFN98℄. They alsopresent a new protool in whih an attaker who gets the ontrol over thehost system for a ertain amount of time an not get a signi�ant advantagefor the time after she lost ontrol. Further the pointed out some weaknessesin the RaMaRK protool [Luk97℄. Some of these ritis have been �xed by[Weis99b℄, but these modi�ations do not ful�ll the stronger seurity model.Stefan Luks has improved the BFN protool on the Fast Software Enryp-tion 1999 by presenting the Aelerated Remotely Keyed Enryption Sheme(ARK). To avoid onfusion we use the same notations as in [Luk99℄ whereever it is possible.8.1 Building Bloks and Seurity AssumptionsIn [Luk99℄ was proven that the seurity of the ARK sheme is losely re-lated to the seurity of the building bloks. In this setion we desribe therequirements for these bloks. We try to make these requirements as weakas possible. This strategy will provide a bigger margin of seurity.8.2 Seurity ParameterBy a we denote the blok size of the blok ipher E (usually 64 or 128 bit).Let b be the output size of the hash funtion H (usually 128 or 160 bit).These numbers are very important seurity parameters. Espeially in most

pratial senarios a 64-bit blok ipher suh as Triple-DES seems to be notappropriate.8.3 building bloksWe use the following building bloks for the ARK protool.� an a-bit blok ipher EK : f0; 1ga ! f0; 1ga(e.g. AES:f0; 1g128 ! f0; 1g128, Rijndael, Two�sh, DEAL/SK)� a family of pseudorandom funtions FKf0; 1gb �! f0; 1ga(e.g. AES based CBC-MAC: f0; 1g160 ! f0; 1g128)� a hash funtion H : f0; 1g� �! f0; 1gb(e.g. SHA-1, RIPE-MD160: f0; 1g� �! f0; 1g160)� a length-preserving stream ipher S : f0; 1g� �! f0; 1g�,depending on an a-bit key.(e.g. ARCfour, AES/OFB)8.4 Seurity AssumptionsThe seurity assumptions are1. EK is a random permutation over f0; 1ga, and for K 6= K 0 the permu-tations EK and EK0 are independent.2. FKf0; 1gb �! f0; 1ga, is a random funtion, i.e., a table of 2b randomvalues in f0; 1ga. Similarly to above, two random funtions dependingon independently hosen keys are assumed to be independent.3. H is be ollision resistant, i.e., the adversary unable to �nd a pair(V; V 0) 2 f0; 1g� with V 6= V 0 and H(V) 6= H(V 0) if V 6= V 0.4. SK is a length-preserving stream ipher, depending on a key K 2f0; 1ga. I.e., for every number n, every plaintext T 2 f0; 1gn, everyset of keys L = fK1; : : : ; Krg � f0; 1ga and every key K 2 f0; 1ga,K 62 L, the value SK(T) 2 f0; 1gn is a random value, independent ofT , SK1(T), . . . , SKn(T).9 The ARK enryption shemeIn this setion we desribe the Aelerated Remotely Keyed (ARK) Enryp-tion Sheme.

9.1 NotationWe use two pseudorandom permutationsE1; E2 over f0; 1gaand two pseudorandom funtionsF1; F2 : f0; 1gb �! f0; 1gaThe enryption funtion mapes any B-bit plaintexts ta B-bit iphertext. Thesheme an use any bloksize B with B � a.We represent the plaintext by(P;Q) with P 2 f0; 1ga and Q 2 f0; 1gB�a:Similarly we represent the iphertext by(C;D) with C 2 f0; 1ga and D 2 f0; 1gB�a:For the protool desription, we also onsider intermediate values X;Z 2f0; 1gb and Y 2 f0; 1ga. The enryption protool works as follows:9.2 Enryption ProtoolGiven the plaintext (P;Q)1. The host sends P and X := H(Q) to the ard.2. The ard responds Y := E1(P)� F1(X).3. The host omputes D := SY (C).4. The host sends Z := H(D) to the ard.5. The ard responds C := E2(Y � F2(Z)).The deryption protool is very similar (s. Fig. 7 or [Luk99℄).9.3 Separation of En- and DeryptionNote that if E1 and E2 are independent or if F1 and F2 are indepenent,the deryption protool annot be used for enryption. This desribes somekind of authentiation mehanism whih would usually require heavy-weightpubli-key ryptography. We may produe ards whih an only be used forenryption or only for deryption � even if the ard holder tries to misusethe ards (but annot break their tamper-resistane). E.g., we an preventa reeiver from faking a pay-tv program.

Q

F1

X

H

D

Z

H

CYP

S

E1 E2

Card

F2

Figure 7: Aelerated Remotely Keyed Enryption [Luk99℄10 Appliation of RKE for IP paket enryp-tionRKE enryption of IP tra� is not the same as enryption of a �le system orvideo stream, it has its own properties and requirements. For one, the bloksize is not �xed. IP tra� is handled a paket at a time, so every enryptionblok typially ontains exatly one IP paket. Only when multiple paketswait in the transmit queue the blok may onsist of multiple bloks. Elseappliations on both hosts ould experiene unaeptable latenies or evendead lok. Clearly we would not want to make the enryption blok sizesmaller than the IP paket sine: it does not give inreased seurity butosts extra overhead.In most ases IP pakets will be smaller than the maximum paket size ofthe underlying datalink in order to avoid fragmentation. For Ethernet LANenvironments this results in a maximum blok size of less than 1500 bytes.A seond onsideration is that internet tra� also puts strong require-ments on lateny. The round trip time of the enrypted onnetion minimallyis four times the time the smartard needs to proess a single blok.We have performed some timing measurements with the iButton (seeparagraph 12.4). Unfortunately we had to onlude that the urrent iButtonrevision is prohibitively slow for remotely keyed enryption of internet tra�.11 Restriting Usage of the iButtonA ommon priniple is to base authentiation on both something we own (inthis ase the iButton) and something we know (i.e. a pass phrase). This

ensures that simply stealing the token will not allow an adversary aess tothe proteted servies.11.1 The ISO7816 external authentiate ommandTraditionally the 'something we know' part has been implemented with an'enter PIN' ommand (alled 'external authentiate' in ISO7816-4) providedby the hardware token: initially the token bars aess to its proteted om-mands, in our ase the alSkeyID ommand. The appliation then issuesthe enter PIN ommand with a PIN given by the user. The token heks thePIN. If it is orret the token hanges its volatile state, allowing aess tothe proteted ommands. After a reset the state will be 'bar aess' again.In ase of an inorret PIN the token dereases3 a non volatile retry ounter,if the ounter reahes zero the token will not aept enter PIN ommandsanymore. Most implementations allow this retry ounter to be reset after anadministrative PIN is entered. Typially this PIN is only know by the issuerof the token, not the end user.There are several drawbaks to the use of the PIN feature:1. Failitates an o�ine attak. An adversary an try PINs (up till theretry ount limit) without anyone notiing sine the token gives imme-diate feedbak about the orretness of the PIN.2. One a PIN is bloked due to too many failed enter PIN attempts, theuser either has to obtain a new token or (physially) go to the tokenissuer to have the PIN unbloked again.3. Many implementations of PIN ontrolled aess in smart ards havebeen shown to ontain �aws, that allow one to dedue the orret PINor bypass the retry ounter [SHB97℄.4. The statefulness of the method might allow unauthorized appliationsaess to the proteted ommands. Example senario: the user starts atrusted appliation and gives it the PIN of the token. The appliationenters the PIN, but rashes or gets killed before it an reset the token.Now any appliation that an aess the token immediately has aessto the proteted ommands, without the user even knowing.3atually any deent PIN implementation dereases the ounter before the hek andinrease the ounter again if it is OK. This prevents an attak where one measures thepower onsumption of the ard to see if it tries to write to nonvolatile memory (poweronsumption rises diretly before the write). One then simply prevents the write operation(and thereby the ounter derement) by terminating power to the ard.

To ounter this, the button might request the PIN on every invoationof a proteted ommand. However, the ISO7816-4 standard does notprovide this, so few, if any, smartard implement suh a feature.11.2 A naive alternativeWe would like to have a method that answers better to the atual goal:shielding the usage of the orret authentiation key rather than protetingaess to the alSkeyID ommand.An initial e�ort to provide this, that also has been implemented in theiButton applet, is the following onstrution: the PIN P shall not be usedas a password but as a Key Enrypting Key (KEK) for the authentiationkey K. The smartard ontains the enrypted authentiation key Q. So theSKEYID alulation beomes:SKEY ID = prf(E�1P (Q); NijNr)The Enryption algorithm of our hoie was the ever favorite exlusiveOR funtion, �rstly beause it's fast, easy and available everywhere (un-enumbered by rypto export restritions). But another desirable feature isthat it allows to trivially hange the key without having to derypt the iphertext.A lear advantage of this sheme is that the iButton does not ontain theleartext value of either the seret key or the PIN. Also the implementationontains only a single exeution path, it does not have to deide whether thegiven PIN is orret. In e�et this ounters the attaks on PIN dedutionfrom subliminal paths. Also if an adversary manages to read the ontents ofthe button, for example by miroprobing, she has not yet obtained the key.Only after a suessful PIN guessing attak the key beomes available.The sheme is inompatible with the retry ounter feature of the ISO7816PIN ommand: sine the button does not know the orret PIN it annotderease the ounter if the PIN is not orret. The purpose of the retryounter is to thwart attempts to obtain the PIN by guessing them until theorret one is found. If we an ensure that an attaker an only verify if aPIN is orret if he has to ontat one of the IPSe hosts eah try we do notneed a retry ounter in the smartard: the IPSe implementation an detetthe PIN guessing attempt and deal with it in a muh more �exible way than asmartard ould (for example by temporarily bloking the aount, notifyinga seurity o�er, et.).However the presented sheme is not seure against o�ine PIN guessing.Obviously if an adversary knows a valid triplet {None-I, None-R, SKEYID}

Figure 8: Pass phrase keyed alulation of SKEYIDhe an verify a PIN by sending it and the nones to the ard and hekingwhether the ard returns the same SKEYID. The hanes for an adversaryto know suh a triplet may be very slim, but muh more easily obtainableinformation will do to: the adversary does not atually need to know theSKEYID he just has to verify whether it is the orret one. Coinidentallythe I-digest and R-digest in the IKE exhange have been designed to ensurethe peer party has the orret SKEYID.An adversary an abuse this feature to hek on 'andidate' SKEYIDs.The �rst half of this attak is online: he provokes (or waits for) one of theparties to initiate a key exhange. He then answers this initiation an takesthe role of the responder. He reords all exhanged data and uts o� theommuniation at the last step (sending the R-digest) sine he annot sendthe orret R-digest anyway. He now has all parameters neessary for thealulation of the I-digest, exept two: the SKEYID and the IDi1. Nowhe an perform the seond, o�ine, half of the attak: guess a PIN, let thesmartard generate the andidate SKEYID and verify it. For veri�ation healulates all derived SKEYIDs from the andidate SKEYID and all obtainedparameters. Then he derypts IDi1, alulates the I-digest and ompares itto the (derypted) I-digest reeived from the initiator. If the math theSKEYID is orret and onsequently the PIN too.This attak enables the adversary to try as many PINs as neessary with-out having to ontat one of the parties more than one, thereby irumvent-ing any online retry ounters.11.3 A potential improvementThe problem mentioned above is aused by the fat that an adversary anompletely speify the input to the SKEYID alulation on the smartard.Therefore she an 'replay' the same IKE negotiation over and over again withdi�erent PINs.

In order to prevent suh a replay we suggest the generation of an extranone by the smartard, to be inorporated in the SKEYID alulation. TheSKEYID then beomes:SKEY ID = prf(pre� sharedkey;NihjNisjNrhjNrs)where Nih is the initiators host none, Nis is the none generated bythe smartard of the initiator and Nrh and Nrs are the respetive respondernones. This sheme is ompatible with the existing IKE protool, we ansimply let Ni := Nih | Nis and Nr := Nrh | Nrs.However we have not yet performed a seurity analysis for this onstrut,further investigation is reommended.12 ImplementationMethod 1 (smartard �le system) and 2 (SKEYID alulation) have beenimplemented for FreeS/WAN 1.3 (bakporting should be simple). Beauseof the many open issues surrounding the RKE approah, no attempt hasbeen made to implement it. All written ode is has been plaed under theGeneral Publi Liense.The implementation has been split into three parts: the iButton applet,iButton host ode and the FreeS/WAN integration ode. The iButton applethas been developed with the iButton IDE 1.01 running on the BlakdownJDK1.2.2pre4.The host ode has been written in C/C++ using the provided C-API.Having to run a omplete Java Runtime Environment for a single SKEYIDalulation is a bit overkill.12.1 The FreeS/WAN integration odeLukily FreeS/WAN ontains a single point where the SKEYID is derivedfrom the long term shared seret and the initiator and responder nones:the funtion skeyid_preshared() in ipse_doi. of the Pluto daemon. TheFreeS/WAN integration has been realized be pathing this �le. It has beendesigned to support both method 1 and 2 and to impose as little limitationson where the shared seret may be retrieved from or how the SKEYID mighthave been generated. Spei�ally the path is ompletely free of any userinteration ode. The pathed Pluto daemon heks whether the sharedseret de�ned in /et/ipse.serets starts with 'exe '. If so, the rest of theseret is assumed to be a ommand Pluto has to exeute to obtain eitherthe real shared seret or the alulated SKEYID, whih one is up to the

CLA INS method desriptionBB 0 setID initializes the button with the shared seretBB 1 getParameter retrieves a parameter:P2 = 0: onnetion nameP2 = 1: shared seret (debug version only!)BB 2 alSkeyid alulates SKEYID from given hallenge.P2 = 0: no password givenP2 = 1: use given passwordBB 3 hangePassword hange password, i.e. o�set shared seretwith given valueTable 1: instrutions implemented in the iButton appletdisretion of the ommand. Pluto passes the neessary parameters, suh asloal and remote IP address, initiator and responder none, onnetion nameand HMAC hash type, to the ommand by setting environment variables.The ommand returns the result by printing a single line to its standardoutput.The implementors of the exeuted ommand are ompletely free in theway they interat with the user and hardware token. In the future a frame-work for this may be developed, that also inludes a more appealing alter-native interfae to other parts of FreeS/WAN, than 'vi /et/ipse.onf' andthe /usr/loal/sbin/ipse ommand.12.2 The iButton AppletThe IPSeID applet provides the smartard servies needed for SKEYIDalulation based authentiation. It implements the 4 instrutions shown intable 1. The desribed implementation inludes the inseure alternative PINfeature desribed in paragraph 11.2.During the applet development we observed that the SHA1 alulation onthe iButton is not fully onforming [SHA1℄. The digest the button generateshas the wrong byte order, that is the bytes are stored in order 32107654.....instead of 01234567...... iButton support on�rmed this behaviour, but didnot give a reason or indiation that it will be orreted in a next iButton�rmware release. Of ourse, a workaround was simple. Other than that, wedid not enounter any di�ulties or problems.

12.3 Host odeThe iButton IDE version we used did not inlude soure ode for the LinuxC-API, but the SPARC Solaris version ompiled without problem on Linux.With it we wrote some small C programs for setting the shared seret inthe iButton and for alulation of the SKEYID. They onsist of little morethan a wrapper around the iButton instrutions. The 'alSkeyid' programonforms to the interfae desribed in paragraph 12.1, so it an be used inombination with FreeS/WAN. It does not perform any user interation: ifthe iButton is not inserted the user is not noti�ed, but the IKE negotiationdiretly fails instead. Clearly for atual deployment a more user friendlyversion is desirable.12.4 Some timing measurementsIn order to get some indiation of the speed of the button and its API,some timing tests have been performed. The test platform was an AMD K7Athlon 500MHz system ontaining 128MB with RedHat Linux 6.1 installed.The iButton had �rmware release 1.11.006 and ontained only the IPSeIDapplet, in its �rst slot. The button was onneted to the omputer with theserial blue dot iButton reeptor. The results of six test runs is show in table2. First button ommuniation initialization ('initJIB') and lose down('leanup') were measured. The initialization turned out to be slower thanwe expeted: it takes almost 0.3 seonds. The leanup is muh heaper andompletes within a milliseond.Next we timed a very simple instrution: a 'ping' instrution, whihsimply ehos bak the data (if any) sent as a parameter. A ping without datais the simplest instrution an iButton an exeute, it is an empty method.Yet it takes 0.67 seonds to omplete. When we sent some data along (1bytes su�ed) this inrease to 1.16 seonds. These values are muh higherthan we expeted based on experiene with onventional smartards4.We also timed two of the instrutions in the IPSeID applet: getParam-eter and alSkeyID. The getParameter performs in the same range as theping ommand, not surprisingly as it does little more than returning a bytearray.The alSkeyID instrution is muh more omplex as it needs to performtwo SHA1 hash alulations. Apparently this is a rather heavy job for theiButton, it takes almost 3.5 seonds for the ompletion of the instrution. The4a typial Chipper or ChipKnip ard an handle over 20 'selet �le' ommands in aseond, ie. the 'ping time' is less than 50 milli seonds.

ation 1 2 3 4 5 6 averageinitJIB 0.298 0.293 0.300 0.296 0.298 0.296 0.296leanup 0.000 0.000 0.000 0.000 0.000 0.000 0.000Ping 0.670 0.670 0.670 0.670 0.670 0.670 0.670Ping w. data 1.160 1.160 1.160 1.160 1.160 1.160 1.160getParameter 0.96 0.97 0.97 0.96 0.96 0.97 0.97alSkeyID 3.47 3.44 3.44 3.45 3.44 3.45 3.45alSkeyID w. pass 3.45 3.45 3.45 3.46 3.45 3.45 3.45Table 2: time measurements (in seonds) of 6 runs of iButton operationsvariant of the instrution whih takes a 64 byte password as extra parameteris not signi�antly slower.Aording to iButton support <jibsupport�dalsemi.om> �1.5-2.0 se-onds per hit are normal.�.13 ConlusionsStoring long term serets for IPSe in a hardware token like the iButton anonsiderably improve the seurity of the VPN. The Internet Key Exhange(IKE) permits storage of the long term keys in a safer plae than on harddisk without hanges to the protool.Remotely Keyed Enryption is a powerful onept for smartard enabledenryption that opes with one of the major problems for appliation ofsmartard in bulk enryption: the low bandwidth of the ard. Fast and seureRKE protools are available that work around another, politial problem:export restritions on smartards that implement strong enryption.The iButtons Java Card tehnology gives smartard appliation devel-opers muh more freedom and �exibility over onventional smartard teh-nology. It enabled us to quikly build a small smartard applet for seureauthentiation of IPSe key exhanges, something not doable with onven-tional ards.The iButton is a relatively slow devie: it takes more than 3 seondsfor an HMAC alulation. This prohibits the appliation of Remotely KeyedEnryption protools, beause the resulting lateny of the enrypted IP tra�will be too high to be usable.

14 Future WorkThe proposed methods for storage of IPSe's long term keys in iButtons anbe extended to other hardware tokens that support the SHA1 algorithm.For Java Card ompliant tokens the adaption should be trivial. Anotherextension is addition of support for IKE based on publi keys. A method 1implementation is simple, for method 2 one requires publi key operations inthe token, so this will require export restrited tokens.Furthermore, it should be easy to apply the presented methods and im-plementations to other IPSe implementations, suh as NIST's Linux IPSeor Free- and NetBSD's IPSe implementation.Of ourse a feasible method 3 solution remains an interesting subjettoo. This requires a token that is fast enough to keep the lateny withinreasonable limit, a task the urrent iButton revision annot handle.Lastly we have implemented but the basis of iButton enabled key ne-gotiation. For atual use, a good user interfae has to be built. CurrentlyFreeS/WAN itself is laking a user friendly interfae too.Referenes[BFN98℄ Blaze, M., Feigenbaum, J., and Naor, M., �A Formal Treatment of Re-motely Keyed Enryption (Extended Abstrat)�, Eurorypt '98, SpringerLNCS 1403, 1998.[Blaz96℄ Blaze, M. �High-Bandwidth Enryption with Low-Bandwidth Smartards�,Fast Software Enryption (ed. D. Gollmann), Springer LNCS 1039, 33-40,1996.[Chip℄ Website Chipper Netherlands:http://www.hipper.nl/standvanzaken/ijfers.html[Dallas℄ Website Dallas Semiondutor iButton:http://www.ibutton.om/ibuttons/java.html[DH℄ Di�e, W., and Hellman M., �New Diretions in Cryptography", IEEETransations on Information Theory, V. IT-22, n. 6, June 1977.[ESP℄ Kent, S., and Atkinson, R., �IP Enapsulating Seurity Payload (ESP)�,RFC2406, November 1998.[FeSh00℄ Niels Ferguson and Brue Shneier, �A Cryptographi Evaluation of IPSe�,January 2000.[FreeSWAN℄ Website FreeS/WAN: http://www.freeswan.org[Gutm99℄ Gutmann, P., �Windows Memory Lok�, godzilla rypto tutorial, 1999.http://www.s.aukland.a.nz/~pgut001/tutorial/[HMAC℄ Krawzyk, H., Bellare, M., and Canetti, R. �HMAC: Keyed-Hashing forMessage Authentiation�, RFC2104, February 1997.

[HMAC-SHA℄ Madson, C., and R. Glenn, �The Use of HMAC-SHA-1-96 within ESP andAH", RFC 2404, November 1998.[IKE℄ Dan Harkins and Dave Carrel, �The Internet Key Exhange (IKE)�, draft-ietf-ipse-ike-01.txt, May 1999.[Ipay℄ Website Interpay: http://www.interpay.nl/ws?pg=kern-toon.html[IPSe℄ Website IETF IPSe working group:http://www.ietf.org/html.harters/ipse-harter.html[IHR98℄ Itoi, N., Honeyman, P. and J. Rees, �SCFS: A UNIX Filesystem for Smart-ards�, Deember 1998. {Pro. USENIX Workshop on Smartard Tehnol-ogy, Chiago (May 1999).}[Kiv99℄ Kivinen, T, �Fixing IKE Phase 1 & 2 Authentiation HASHes�, draft-ietf-ipse-ike-hash-revised-01.txt, Marh 1999.[Luk96℄ Luks, S. �Faster Lubby-Rako� iphers�, Fast Software Enryption,Springer LNCS 1039, 1996.[Luk97℄ Luks, S., �On the Seurity of Remotely Keyed Enryption�, Fast SoftwareEnryption, (ed. E. Biham), Springer LNCS, 1997.[Luk99℄ Luks, S., �Aelerated Remotely Keyed Enryption�, Fast Software En-ryption, Springer LNCS, 1999.[LuWe99a℄ Luks, S., and R. Weis, �Remotely Keyed Enryption Using Non-Enrypting Smart Cards�, USENIX Workshop on Smartard Tehnology,Chiago, May 1999.[SHA1℄ NIST, FIPS PUB 180-1: �Seure Hash Standard�, April 1995.[SHB97℄ Squire, B., Hemel, T., and Bakker, B., �Smartard Haking�, Haking inProgress 97, Almere, 1997.[ShSo99℄ Shamir, A, and van Someren, N., �Playing 'hide and seek' with stored keys�,Finanial Cryptography '99, Anguilla, BWI, 1999[Sun00℄ http://www.sun.om/produts/javaard/[WeBo00℄ Weis, R. Bogk, A., �Seure High Speed Video Enryption�, onvergeneintegrated media GmbH (Berlin, San Franiso, Amsterdam), CEBIT 2000,Hannover, 2000.[Weis97℄ Weis, R. �Combined Cryptoanalyti Attaks against Signature- and En-ryption shemes�, (in German), A la Card aktuell 23/97, 1997, pp. 279�.[Weis99a℄ Weis, R., �Crypto Haking Export Restritions�, Chaos CommuniationCamp, Berlin, 1999[Weis99b℄ Weis, R., �A Protool Improvement for High-Bandwidth Enryption UsingNon-Enrypting Smart Cards�, IFIP TC-11, Working Groups 11.1 and 11.2,7th Annual Working Conferene on Information Seurity Management &Small Systems Seurity, Amsterdam, 1999.[Weis00℄ Weis, R., �A Trivial Host Card Enryption Protool�, February 2000, to bepublished[WTK97℄ Weis, R., Kuhn, M., and Tron, �Haking Chipards�, CCC 1997, Hamburg,1997.

