A Rule Based Interface to the Kernel for
Selective Packet Relaying

K N Gopinath, Sumit Ganguly

March 23, 2000

1 Introduction

Network Firewalls have become an integral part of the security of the com-
puter installation at any organization, whether commercial, academic or oth-
ers. Broadly speaking, firewalls can be classified as follows [2]. Packet filters
are firewalls that typically run at the network layer and use information in
the TP and TCP headers to control traffic. Examples within public domain
include Linux Packet filter (ipfw), BSD Packet filter etc. Application level
firewalls typically are prozy servers which relay data at the application level.
Examples are fwtk from Trusted Information Systems (TIS), Squid etc. Cir-
cuit level prozies, as typified by SOCKS [3], authenticate a given user, host,
application triple, and, otherwise relay data at the session level.

Application level firewalls are capable of enforcing elaborate and fine-
grain application specific security policies, such as content-based filtering of
data, and can provide good audit facilities. A common disadvantage of both
application level proxy and circuit level proxy is that they require application
data to be copied back and forth between the proxy daemon and the kernel at
the firewall machine. This in turn necessitates a context-switch between the
kernel and the application daemon and vice-versa, virtually for every packet.
Although such a design ensures that general security policies can be enforced,
many site/application pairs may not have much use for inspecting every packet
flowing through a connection. For such site/application pairs, the overhead of
context switches for almost every packet due to the implementation of an

application or circuit-level relay, increases the load on the firewall machine.

The concern for reducing potentially large number of context-switches
at the firewall machine motivates that mechanisms be provided by the kernel
that allows packets to be selectively sent to the application daemon as dictated
by security policies. Such a design could significantly reduce the load on a
firewall machine by reducing the overhead of context switches between the
kernel and the application daemon at the firewall. A class of firewalls with
such characteristics is emerging and is variously called as Stateful, Dynamic or
Smart Packet Filters [6, 5]. A common characteristic of these firewalls appears
to be the absence of a relay at the application-level or the circuit-level.

As a simple example, consider the port command transmitted as part of
the standard FTP application. A stateful packet filter (SPF) “remembers” the
port number argument of the port command. A subsequent incoming data
connection is checked against the “remembered” value and is allowed only if
the port numbers match.

Several commercially available firewalls such as Firewall-1 [6] are based
on the general idea of stateful packet filters. However, the design and imple-
mentation details that are publicly available for these products are too meagre
to allow comparative or critical evaluation. One of the decisions that needs to
be made in the implementation of SPFs is the amount of application specific
knowledge that needs to be built into the kernel. One possibility is that the
kernel can be made aware of a significant portion of the application protocol.
An example in this category is the IP masquerading module of Linux kernel
version 2.0.34. It embeds the functionality of searching for and remembering
the arguments of a port command of the FTP application inside the kernel.
Another possibility would be the design of mechanisms which can be used by
user space daemons to implement site-specific security policies but which make
the kernel lightweight and independent of applications.

In this paper, we present a design and prototype implementation of ker-
nel mechanisms that effectively allow selective packet relaying for TCP based
applications. This is achieved by keeping traffic state/information both in the
kernel and application space. These kernel mechanisms are designed to be
lightweight, that is, the kernel is not required to be aware of the details of
application level protocols. We further argue, by means of examples, that the
mechanisms provided by the kernel are sufficiently general to allow a contin-

uum of application level security policies to be enforced, ranging from simple

packet filtering to those which can be provided by relays. The implementation
has been done by modifying the IP(v4) stack of Linux Kernel (version 2.0.34)
running on an Intel x86 processor. Using the kernel mechanisms, we have built
a prototype security daemon for FTP and TELNET applications which runs
as a user process.

The remainder of the paper is organized as follows. Section 2 presents a
rule-based interface to the kernel that can be used by application level security
daemons to specify which packets should be inspected. Section 3 presents a
detailed example of how an FTP security daemon might use the rule-based
mechanism to enforce fine-grain access control policies. Section 4 presents a
short description of how an IP packet is processed by the Linux kernel after it
is received from the network interface. Section 5 presents an overview of our
implementation. Sections 6 and 7 discuss the two main aspects of our kernel
modification, namely, maintenance of connection state and communication
between application process and the kernel respectively. Section 8 discusses
in brief our prototype implementation of an application level security daemon
for FTP and TELNET applications. We present our conclusions and discuss

future work in Section 9.

2 Rule-Based Selective Filtering of Packets

In this section, we present the rule based interface to the kernel. In our scheme,
the applications can specify rules for the packet filtering to the kernel. These

rules have the following form.
<src-ip,src-msk,src-port,dst-ip,dst-msk,dst-port,state,action>

The fields src-ip through dst-port are familiar arguments used by
standard packet filters as well - difference lies in last two arguments, state
and action. The argument state is a user level abstraction of the possible

states of a TCP connection. It can take one of the following three values

e Connection initiation (abbreviated as i), a connection is in this state
when the first SYN packet is seen by the kernel.

e Connection termination (abbreviated as t), refers to the state entered
when the first RST or FIN is seen by the kernel and remains in this state

until the termination of the TCP connection is complete.

e normal (abbreviated as n), refers to the normal state of a TCP connection
where the data is flowing through the connection. A normal state is

entered when the three way handshake is complete and exited when an
RST or FIN is seen.

The usefulness of this abstraction will be made clear later with the help
of some examples.

The action argument of a rule can take one of the following values :

e Send and Wait for permission (SAW_perm) The kernel first sends the
packet to the daemon and waits for a yes/no reply from the daemon. If
it receives an affirmative reply, then the kernel forwards the packet to
the appropriate network interface. Otherwise, it drops the packet and

sends an icmp message to the originator of the packet.

e Send and Wait for packet (SAW_packet). The kernel first sends the
packet to the daemon as in the case for SAW _perm. The daemon, in this
case, in addition to replying with a yes/no, can also modify the packet
and send the modified packet back to the kernel. If the daemon returns a
yes, the kernel sends the returned packet to the network interface. Oth-
erwise, it sends an icmp message to the source as before. Any application

specicific masquerading is handled using this mechanism.

e Send and Do not Wait (SDW) The kernel sends a copy of the packet
to the application daemon as well as forward the packet to the network.
However, the kernel neither waits nor expects any response from the

daemon.

e Forward Packet (F) The kernel forwards the packet to the network in-

terface without informing the daemon.

e Drop Packet (D) The kernel drops the packet and sends an icmp message

to the originating machine.

All rules apply to a simplex part of a duplex TCP connection. Thus, if the
daemon intends to have identical rules applied to both incoming and outgoing
packets of the same TCP connection, then, the rules have to be duplicated
with the appropriate entities interchanged (e.g. source address exchanged with

destination address).

Rules may be designed to implement a variety of security policies span-
ning a range between the generality provided by application level proxies, on
one hand, to the specificity and efficiency of simple packet filters. To see this,
assume that rules are written so that the kernel intercepts each packet and
sends it to the application daemon and waits for the daemon to return the
packet to the kernel (SAW _packet). This effectively mimicks the design of an
application level proxy. On the other hand, rules may be written so that ev-
ery packet is either forwarded or rejected without sending to the application
level. This effectively implements the design of a packet filter. Also, more
interestingly, rules may be written (depending on the application we want to
proxy/site requirements) to selectively send packets to the application daemon

and still realize rich security policies

3 An Example FTP Firewall

In this section, we show how a fine grain access control policy for the FTP
application can be implemented using the rules described above. Suppose that
a network administrator wishes to have the following access control policy for

internal users of the FTP application.

e An FTP control connection may be authorized to go through based on

a combination of userid and machine (or subnet).

e Depending on userid and/or machine id(subnet), certain operations such

as get, put etc may be selectively enabled or disabled.

e The data flowing through the data channel need not be monitored.

We specify four rules that implement the above security policy. In order to
keep the rules short and simple, in this section we avoid mentioning the mask
field. We illustrate the rules assuming that the user initiates the FTP ap-
plication from an internal machine, with the hypothetical Internet address of
144.16.167.98. In general, this address could represent a subnet of the local
area network which may be specified with the help of a mask.

Rule 1 says that connection initiation packets for the FTP control con-
nection (port 21) originating from 144.16.167.98 be sent to the daemon and
the kernel should wait for an affirmative reply from the daemon. The FTP

security daemon can use this rule to check if the user/machine has the au-
thorization to use FTP or not. This can be done by using an authentication
mechanism (say, using “ident” service) and by consulting a local database of

access control lists. The notation — in the rules is used to denote “any” value.

Rule 1 src-ip src-port, dest-ip dest-port state action
144.16.167.98 - - 21 i SAW_perm

Rule 2 says that all normal outbound packets on FTP control connection
be sent to the daemon. The kernel, however, may forward the packet immedi-

ately.

Rule 2 src-ip src-port dest-ip dest-port state action
144.16.167.98 - - 21 n SDW

The rule above allows the FTP daemon to monitor all traffic passing
through the FTP control channel. In particular, FTP commands such as
PORT, RETR etc. are seen and if neccessary, remembered by the FTP fire-
wall daemon. For the PORT command, the FTP daemon remembers the port
number argument on the internal machine. Whenever a RETR command is
seen, the FTP daemon can consult local database to see if the given user
(whose identity and capabilities are determined during connection initiation)
has RETR permissions. It should be noted that such application specific state
is maintained by the FTP security daemon and not the kernel. Rule 2 does
not disallow packet flow even if the user has issued a command he/she is not

authorized. The security is ensured by the following rule.

Rule 3 src-ip src-port dest-ip dest-port state action
- 20 - - i SAW _perm

The rule above says that any data channel initiation packet (port 20) be
intercepted and sent to the FTP daemon. The kernel waits for an affirmative
answer from the daemon. This rule together with Rule 2 provides a mecha-

nism to disallow unauthorized traffic. Suppose that a user is not allowed to use
RETR command of FTP. Then, the FTP daemon can remember that a RETR

is being attempted when it sees the RETR command on the control channel
(Rule 2). The subsequent data channel connection packet is intercepted by
Rule 3. The daemon can then send a negative response to the kernel which
will cause the kernel to reject the connection. However, the FTP control con-
nection will still be active and he can issue another FTP command. Thus, the

command based authorization can be implemented.

Rule 4 is used to let the daemon know of the termination of FTP control

channel so that the required cleanup action can be taken.

Rule 4 src-ip src-port. dest-ip dest-port state action
144.16.167.98 - - 21 t SDW

The above set of rules assumed that the subnet has a valid IP address in
the Internet. Suppose that this is not the case. The FTP security daemon may
wish to masquerade its own IP address for the IP address argument of the port

command of FTP. This is accomplished by replacing the Rule 2 by the Rule 2’.

Rule 2’ src-ip src-port dest-ip dest-port state action
144.16.167.98 - - 21 n SAW_packet

The SAW _packet value of the action field causes the kernel to send the
packet to the daemon and then to wait for the packet to be delivered back
to it by the daemon. The daemon masquerades the IP address of the port
command (whenever applicable) and returns the packet to the kernel.

The above example illustrates a possible way of using the mechanisms
provided by the rule based inspection to implement the desired security poli-
cies. An advantage of the scheme above has been to avoid sending packets
on the data channel of FTP to the application level. Another advantage is
that when a particular FTP data transfer request is rejected, the FTP control

connection is not disturbed and can be used for subsequent requests.

The example also illustrates a design goal that we have implicitly tried
to follow, namely, to keep the kernel simple and independent of application

semantics.

4 Path of an IP Packet within Linux Kernel

Linux implements a protocol family as a series of connected layers of software
[1], analogous to the protocol layers themselves. When a network device re-
ceives a packet from the network it converts the received data into a socket
buffer data structure, called sk_buff, and interrupts the CPU. The interrupt
processing routine of the network device adds the received sk_buff structure
into a backlog queue (discarding the packet if the queue is full). It then sets
a flag that indicates to the scheduler that the network bottom half handler
should be called. The network bottom half handler is the portion of the kernel
that handles the checking, forwarding of the packet to higher layers or to the
device etc.

When the network bottom half handler is run by the scheduler, the han-
dler passes the packet to the appropriate higher level protocol (say, IP for IP
packets). In the case of IP packets, the ip_rcv() function is invoked. This
function decides whether the packet is destined for itself or not. If so, it passes
the packet to the appropriate higher level protocol (say, TCP or UDP). If the
packet is destined for some other machine, and this host is configured as a
router (ip_forwarding host), it calls the function ip_forward() to further
process the packet. This function checks the standard packet filter rules before
deciding whether to call the underlying driver routine to send the packet. The

network bottom half handler code in Linux is written to be non-reentrant.

5 Overview of Modifications to the Linux Ker-

nel

The main modifications to the kernel were made in the bottom half handler
part of the code. In the unmodified kernel, the function ip_rcv() calls the
function ip_forward() to process packets which need to be routed to a dif-
ferent machine. In our modification, ip_rcv() calls spf_ip_forward() which
implements the rule based selective packet filtering. Depending on the policy
prescribed by the rules and the return value from the daemon (if applicable),
the packet is either dropped or forwarded to the appropriate interface by calling
ip_forward().

The implementation of the rules mechanism can be conceptually divided

into two components, namely, (1) maintaining the state of a TCP connection
and (2) performing the actions for every packet as prescribed by the rules. The
key element in the latter component is a robust mechanism for communica-
tion between the kernel and the daemon. This is discussed in the section 7.
Maintenance of the kernel state is discussed in section 6.

Rules are read into the kernel using an “ioct]l” like mechanism. We have
used the existing socket interface to set up the rules for the kernel. These rules
are read in at boot time or may be dynamically inserted by the application.
The rules are maintained as a linked list and packets are checked against the
list to see if there is any match.

The rules facility (currently) uses the ip_fw packet filter implemenation
within the Linux kernel, primarily to allow I[P masquerading. The ip_fw im-
plementation supports generalization of the IP address fields using the masks

and supports IP masquerading. We assume that IP fragments are reassembled
by enabling the “CONFIG_IP_ALWAYS_DEFRAG” option.

6 Connection Authorization and State Main-

tenance

In this section, we discuss the detals of how connection state is maintained
and used in the routine spf_ip_forward().

From the user’s point of view, a connection can be in one of the three
abstract states, namely, initiation, normal and termination. We implement
these abstractions using a more detailed state diagram as shown in Figure 1
which is actually a simplification of the possible states a TCP connection can
go through. We now discuss the transitions and the actions taken at each
transition.

A state table is maintained by the routine spf_ip_forward() (basically
to verify if a packet belongs to an authenticated connection). Every arriving
packet is first checked to verify whether the packet belongs to an authorized
TCP connection or not. A connection is authorized by processing the first
SYN packet as follows. When a SYN packet arrives, a state table entry is
created for the connection, identified by the four fields of the packet, namely,
src_ip, src_port, dest_ip, dest_port. The state of the connection is set
to T.SYN_RECVD (see figure 1). The rules are now checked to find out the

T_
AUTH_
FAILED

Figure 1: Connection Authentication State Diagram

policy prescribed for this connection during the connection intiation state. The
resulting value could be any of the previously explained action values.

If the resulting value is either SDW or F, the state for the connection is
set to T_AUTH_SUCCEEDED and the kernel function ip_forward() is called.
If the action prescribed is SAW_perm, the packet is queued and the security
daemon is called. The interface between the kernel and the security daemon
will be explained shortly. When and if the daemon returns with an affirmative
answer, the state for the connection is set to T_AUTH_SUCCEEDED and
the kernel function ip_forward is called. If the value returned is D, or the
daemon returns with a negative answer, the state of the connection is set to
T_AUTH_FAILED state, then its state table entry is deleted.

Since TCP connections are duplex, once a connection is authorized, then
an entry corresponding to opposite half of the duplex connection is created
and its state is also set to T_AUTH_SUCCEEDED. A connection which is in
the authorized state (i.e, T_AUTH_.SUCCEEDED) remains in this state until
either a FIN or RST packet is seen.

For all packets that are not the intial SYN packet, the following principle
is followed. If an arriving packet is not a SYN packet, and the state table entry
for that connection is either absent or is in T_AUTH_FAILED state, then the
packet is dropped (and an ICMP error message sent back). TCP packets that
are part of the 3-way handshake protocol, but are not SYN packets, namely,
SYN-ACK and ACK packets, are forwarded without checking against the rules
only if the connection is in an authorized state. Otherwise such packets are
dropped. Similarly, if a rule specifies some action to be taken upon termina-
tion of a connection, such a rule is triggered when the first RST or FIN packet
is seen. Subsequent FIN/ACK packets are forwarded subject to the above

principle.

The Table 1 summarizes each of the transitions.

7 Communication between Kernel and Appli-

cation process

An important part of the implementation was to provide a robust means of

communication between the kernel and an application level process/daemon

Transition | Receive Action

1 Connection Initiation(SYN)packet Create State Table entry

2 Authentication Success Continue with the Connection
3 Authentication Failure Reject the Connection

4 Packet of the Authenticated Connection | Forward

5) FIN packet Forward and Remember

6 FIN/ACK Forward and Remember

7 ACK for a FIN Forward and Remember

8 FIN Forward and Remember

9 ACK for FIN Forward and Remember

10 ACK for FIN Forward and Remember

11 ACK for FIN Forward and Final Wait

12 Timeout Final Cleanup

13 RST Forward and Cleanup

14 Auth Failed for the Connection Send an Error and Cleanup

Table 1: Transitions

implementing the security policies. In this section, we discuss this issue and
then discuss how data packets are processed.

The rules based system requires the facility that packets be selectively
sent to the application level and that kernel should wait for a response from
an application process. This however implies that the kernel cannot simply
use msg-snd and msg_rcv primitives for communication. If msg_rcv (generally
blocking) is called by the kernel, the scheduler detects it as a call from an
active instance of a bottom handler and will not schedule any process. This
will cause the machine to “hang” Therefore, we made use of the netlink driver

interface discussed below.

7.1 Netlink Driver

The netlink driver interface is a framework provided by the kernel and can be
used for direct communication between the kernel and an application space
process. This can be treated as a driver for a dummy device with a certain
major and minor number from the application process point of view. Reads
on that device by the process will block on the event that something is written

to a kernel queue. The kernel writes to the queue and wakes up the sleeping

process. Similarly, writes from the device will trap into the kernel and execute
the “callback handler” for the device inside the kernel.

7.2 Processing TCP data packets for authorized con-

nections

A data packet arriving on an authorized TCP connection is first checked
against the rules to determine the policy prescribed for the packet. If the
packet is to be sent to the daemon and the kernel has to wait for a reply
(SAW_perm, SAW_packet), then the packet is queued in a suspense table. If
the policy is either SAW_perm or SAW_packet or SDW, the packet is written to a
device managed by the netlink driver interface. If the policy is either to Drop
(D) the packet or to Forward (F) the packet, then the appropriate action is
taken without writing to the device.

An interesting part of the implementation was the communication of
the daemon with the kernel, initiated by an action of the type SAW_perm or
SAW_packet in a rule. The daemon writes to the device, which traps to the
kernel and executes the callback handler for that device. This callback handler,
written by us, (called trustd_callback()) checks the return value from the
daemon, updates the state of the connection in case of SYN packets and/or

forwards the packet.

7.3 Avoiding Reentering Non-reentrant code

A subtle problem is possible in a straight forward implementation of our call-
back handler trustd_callback. The handler calls the function ip_forward
which is a part of the net bottom half handler code. But the net bottom half
handler code is non-reentrant. Here there is a possibility for a subtle race
condition wherein just when we call ip_forward() from the callback handler,
an interrupt might occur and after the interrupt the netbottom half handler is
scheduled. Thus we might have a condition in which the ip_forward() routine
is reentered, which could lead to malfunction.

We therefore need to make use of a synchronization mechanism in order
to avoid above race conditions. The solution we have implemented for the
above problem is to create a critical section out of the portion of non-reentrant

code which could possibly have been re-entered. This portion of the code has

been enclosed inside the primitives start_bh_atomic () and end_bh_atomic().
If any part of the bottom-half handler is active, then these primitives will
temporarily disable/enable the bottom half processing respectively. It also
has the additional advantage that interrupts are not disabled during this time
— only the bottom half processing is disabled . This is sufficient as this code
might compete with a bottom half handler code and not directly with interrupt

handler code.

8 Prototype Daemon

The protoype daemon currently implements functionalities like user authenti-
cation and maintaining state related to some applications - FTP and TELNET.
For authentication of the internal users, it currently uses the “ident” proto-
col. It uses a simple database to store access control lists corresponding to
userid, machineid and application level commands. The daemon, currently
implements a prototype FTP proxy by remembering the FTP commands on
the control channel and using this state and the database to decide whether

to allow the subsequent data connection or not.

9 Conclusions and Future Work

In this paper, we have presented a rules based kernel interface which can
be used by the application level process to specify selective packet relaying.
The rules may be specified to implement site and application-specific security
policies in an efficient manner. A prototype of the rules mechanism has been
implemented by modifying portions of the Linux kernel (version 2.0.34). There
are three advantages of this rules based mechanism. Firstly, the kernel remains
lightweight and does not need to be aware of application level protocols. Sec-
ondly, the rules may be written so that every packet need not be sent to the
application. This reduces the number of context switches between the kernel
and the application-level processes. Finally, the rules mechanism is general in
the following sense. Rules may be written to intercept every packet of a TCP
connection, effectively simulating an application proxy. On the other hand,
rules may be written to simulate packet filters in which no packet is sent to

the application layer.

We are immediately preoccupied with consolidating the current imple-
mentation and making it more efficient. Several extensions to the current
work are being explored. One possibility is to allow an application to specify
patterns (regular expressions) and an action trigger, such that if a matching
pattern is detected by the TCP layer of the kernel of the firewall machine, then
it triggers a change in the way data flowing through the connection is moni-
tored. Another possibility is to allow the matched pattern to be modified (in a
simple manner). This facility could be used to specify IP masquerading as well
as to allow masquerading within the data protion of TCP (eg: masquerading
the TP address argument of the PORT command of the FTP application). This
latter facility avoids a potential context-switch.

Another direction of work is the design and implementation of a kernel
TCP level security module. All application specific security daemons commu-
nicate with this security module rather than with the IP layer as currently
implemented. The security module would implement TCP Sliding Window
Protocol on the packets sent to it by the rules mechanism. This design would

further easily allow pattern matching on application data.

10 Acknowledgements

The authors are thankful to Profs. Deepak Gupta and Dheeraj Sanghi of the
Department of Computer Science and Engineering at IIT Kanpur for valu-
able discussions and feedback. We are also thankful to Mr. Amitabh Roy of
the ERNET project, Department of Electrical Engineering at 1IT Kanpur for

valuable guidance in the internals of Linux networking.

References

[1] David A.Rusling. Linux Kernel. URL
http://www.metalab.unc.edu/mdw/LDP /tlk/tlk.html, 1996.

[2] William R. Cheswick and Steven R. Bellovin. Firewalls and Internet Se-
curity. ” Addison-Wesley Publishing Company”, 1994.

[3] M. Leech et al. Socks Protocol Version 5, Internet Draft, March 1996.

[4] Michael Beck et al. Linuz Kernel Internals. ” Addison-Wesley Publishing
Company”, 1996.

[5] Sun Microsystems Inc. Deploying Sunscreen EFS White Paper. URL
http://www.sun/com, 1997.

(6] Checkpoint software Technologies Ltd. Checkpoint Firewall-1 White Paper.
URL http://www.checkpoint.com, June 1997.

