
A Rule Based Interfa
e to the Kernel forSele
tive Pa
ket RelayingK N Gopinath, Sumit GangulyMar
h 23, 20001 Introdu
tionNetwork Firewalls have be
ome an integral part of the se
urity of the
om-puter installation at any organization, whether
ommer
ial, a
ademi
 or oth-ers. Broadly speaking, �rewalls
an be
lassi�ed as follows [2℄. Pa
ket �ltersare �rewalls that typi
ally run at the network layer and use information inthe IP and TCP headers to
ontrol traÆ
. Examples within publi
 domainin
lude Linux Pa
ket �lter (ipfw), BSD Pa
ket �lter et
. Appli
ation level�rewalls typi
ally are proxy servers whi
h relay data at the appli
ation level.Examples are fwtk from Trusted Information Systems (TIS), Squid et
. Cir-
uit level proxies, as typi�ed by SOCKS [3℄, authenti
ate a given user, host,appli
ation triple, and, otherwise relay data at the session level.Appli
ation level �rewalls are
apable of enfor
ing elaborate and �ne-grain appli
ation spe
i�
 se
urity poli
ies, su
h as
ontent-based �ltering ofdata, and
an provide good audit fa
ilities. A
ommon disadvantage of bothappli
ation level proxy and
ir
uit level proxy is that they require appli
ationdata to be
opied ba
k and forth between the proxy daemon and the kernel atthe �rewall ma
hine. This in turn ne
essitates a
ontext-swit
h between thekernel and the appli
ation daemon and vi
e-versa, virtually for every pa
ket.Although su
h a design ensures that general se
urity poli
ies
an be enfor
ed,many site/appli
ation pairs may not have mu
h use for inspe
ting every pa
ket
owing through a
onne
tion. For su
h site/appli
ation pairs, the overhead of
ontext swit
hes for almost every pa
ket due to the implementation of anappli
ation or
ir
uit-level relay, in
reases the load on the �rewall ma
hine.

The
on
ern for redu
ing potentially large number of
ontext-swit
hesat the �rewall ma
hine motivates that me
hanisms be provided by the kernelthat allows pa
kets to be sele
tively sent to the appli
ation daemon as di
tatedby se
urity poli
ies. Su
h a design
ould signi�
antly redu
e the load on a�rewall ma
hine by redu
ing the overhead of
ontext swit
hes between thekernel and the appli
ation daemon at the �rewall. A
lass of �rewalls withsu
h
hara
teristi
s is emerging and is variously
alled as Stateful, Dynami
 orSmart Pa
ket Filters [6, 5℄. A
ommon
hara
teristi
 of these �rewalls appearsto be the absen
e of a relay at the appli
ation-level or the
ir
uit-level.As a simple example,
onsider the port
ommand transmitted as part ofthe standard FTP appli
ation. A stateful pa
ket �lter (SPF) \remembers" theport number argument of the port
ommand. A subsequent in
oming data
onne
tion is
he
ked against the \remembered" value and is allowed only ifthe port numbers mat
h.Several
ommer
ially available �rewalls su
h as Firewall-1 [6℄ are basedon the general idea of stateful pa
ket �lters. However, the design and imple-mentation details that are publi
ly available for these produ
ts are too meagreto allow
omparative or
riti
al evaluation. One of the de
isions that needs tobe made in the implementation of SPFs is the amount of appli
ation spe
i�
knowledge that needs to be built into the kernel. One possibility is that thekernel
an be made aware of a signi�
ant portion of the appli
ation proto
ol.An example in this
ategory is the IP masquerading module of Linux kernelversion 2.0.34. It embeds the fun
tionality of sear
hing for and rememberingthe arguments of a port
ommand of the FTP appli
ation inside the kernel.Another possibility would be the design of me
hanisms whi
h
an be used byuser spa
e daemons to implement site-spe
i�
 se
urity poli
ies but whi
h makethe kernel lightweight and independent of appli
ations.In this paper, we present a design and prototype implementation of ker-nel me
hanisms that e�e
tively allow sele
tive pa
ket relaying for TCP basedappli
ations. This is a
hieved by keeping traÆ
 state/information both in thekernel and appli
ation spa
e. These kernel me
hanisms are designed to belightweight, that is, the kernel is not required to be aware of the details ofappli
ation level proto
ols. We further argue, by means of examples, that theme
hanisms provided by the kernel are suÆ
iently general to allow a
ontin-uum of appli
ation level se
urity poli
ies to be enfor
ed, ranging from simple

pa
ket �ltering to those whi
h
an be provided by relays. The implementationhas been done by modifying the IP(v4) sta
k of Linux Kernel (version 2.0.34)running on an Intel x86 pro
essor. Using the kernel me
hanisms, we have builta prototype se
urity daemon for FTP and TELNET appli
ations whi
h runsas a user pro
ess.The remainder of the paper is organized as follows. Se
tion 2 presents arule-based interfa
e to the kernel that
an be used by appli
ation level se
uritydaemons to spe
ify whi
h pa
kets should be inspe
ted. Se
tion 3 presents adetailed example of how an FTP se
urity daemon might use the rule-basedme
hanism to enfor
e �ne-grain a

ess
ontrol poli
ies. Se
tion 4 presents ashort des
ription of how an IP pa
ket is pro
essed by the Linux kernel after itis re
eived from the network interfa
e. Se
tion 5 presents an overview of ourimplementation. Se
tions 6 and 7 dis
uss the two main aspe
ts of our kernelmodi�
ation, namely, maintenan
e of
onne
tion state and
ommuni
ationbetween appli
ation pro
ess and the kernel respe
tively. Se
tion 8 dis
ussesin brief our prototype implementation of an appli
ation level se
urity daemonfor FTP and TELNET appli
ations. We present our
on
lusions and dis
ussfuture work in Se
tion 9.2 Rule-Based Sele
tive Filtering of Pa
ketsIn this se
tion, we present the rule based interfa
e to the kernel. In our s
heme,the appli
ations
an spe
ify rules for the pa
ket �ltering to the kernel. Theserules have the following form.<sr
-ip,sr
-msk,sr
-port,dst-ip,dst-msk,dst-port,state,a
tion>The �elds sr
-ip through dst-port are familiar arguments used bystandard pa
ket �lters as well - di�eren
e lies in last two arguments, stateand a
tion. The argument state is a user level abstra
tion of the possiblestates of a TCP
onne
tion. It
an take one of the following three values� Conne
tion initiation (abbreviated as i), a
onne
tion is in this statewhen the �rst SYN pa
ket is seen by the kernel.� Conne
tion termination (abbreviated as t), refers to the state enteredwhen the �rst RST or FIN is seen by the kernel and remains in this stateuntil the termination of the TCP
onne
tion is
omplete.

� normal (abbreviated as n), refers to the normal state of a TCP
onne
tionwhere the data is
owing through the
onne
tion. A normal state isentered when the three way handshake is
omplete and exited when anRST or FIN is seen.The usefulness of this abstra
tion will be made
lear later with the helpof some examples.The a
tion argument of a rule
an take one of the following values :� Send and Wait for permission (SAW perm) The kernel �rst sends thepa
ket to the daemon and waits for a yes/no reply from the daemon. Ifit re
eives an aÆrmative reply, then the kernel forwards the pa
ket tothe appropriate network interfa
e. Otherwise, it drops the pa
ket andsends an i
mp message to the originator of the pa
ket.� Send and Wait for pa
ket (SAW pa
ket). The kernel �rst sends thepa
ket to the daemon as in the
ase for SAW perm. The daemon, in this
ase, in addition to replying with a yes/no,
an also modify the pa
ketand send the modi�ed pa
ket ba
k to the kernel. If the daemon returns ayes, the kernel sends the returned pa
ket to the network interfa
e. Oth-erwise, it sends an i
mp message to the sour
e as before. Any appli
ationspe
i
i�
 masquerading is handled using this me
hanism.� Send and Do not Wait (SDW) The kernel sends a
opy of the pa
ketto the appli
ation daemon as well as forward the pa
ket to the network.However, the kernel neither waits nor expe
ts any response from thedaemon.� Forward Pa
ket (F) The kernel forwards the pa
ket to the network in-terfa
e without informing the daemon.� Drop Pa
ket (D) The kernel drops the pa
ket and sends an i
mp messageto the originating ma
hine.All rules apply to a simplex part of a duplex TCP
onne
tion. Thus, if thedaemon intends to have identi
al rules applied to both in
oming and outgoingpa
kets of the same TCP
onne
tion, then, the rules have to be dupli
atedwith the appropriate entities inter
hanged (e.g. sour
e address ex
hanged withdestination address).

Rules may be designed to implement a variety of se
urity poli
ies span-ning a range between the generality provided by appli
ation level proxies, onone hand, to the spe
i�
ity and eÆ
ien
y of simple pa
ket �lters. To see this,assume that rules are written so that the kernel inter
epts ea
h pa
ket andsends it to the appli
ation daemon and waits for the daemon to return thepa
ket to the kernel (SAW pa
ket). This e�e
tively mimi
ks the design of anappli
ation level proxy. On the other hand, rules may be written so that ev-ery pa
ket is either forwarded or reje
ted without sending to the appli
ationlevel. This e�e
tively implements the design of a pa
ket �lter. Also, moreinterestingly, rules may be written (depending on the appli
ation we want toproxy/site requirements) to sele
tively send pa
kets to the appli
ation daemonand still realize ri
h se
urity poli
ies3 An Example FTP FirewallIn this se
tion, we show how a �ne grain a

ess
ontrol poli
y for the FTPappli
ation
an be implemented using the rules des
ribed above. Suppose thata network administrator wishes to have the following a

ess
ontrol poli
y forinternal users of the FTP appli
ation.� An FTP
ontrol
onne
tion may be authorized to go through based ona
ombination of userid and ma
hine (or subnet).� Depending on userid and/or ma
hine id(subnet),
ertain operations su
has get, put et
 may be sele
tively enabled or disabled.� The data
owing through the data
hannel need not be monitored.We spe
ify four rules that implement the above se
urity poli
y. In order tokeep the rules short and simple, in this se
tion we avoid mentioning the mask�eld. We illustrate the rules assuming that the user initiates the FTP ap-pli
ation from an internal ma
hine, with the hypotheti
al Internet address of144.16.167.98. In general, this address
ould represent a subnet of the lo
alarea network whi
h may be spe
i�ed with the help of a mask.Rule 1 says that
onne
tion initiation pa
kets for the FTP
ontrol
on-ne
tion (port 21) originating from 144.16.167.98 be sent to the daemon andthe kernel should wait for an aÆrmative reply from the daemon. The FTP

se
urity daemon
an use this rule to
he
k if the user/ma
hine has the au-thorization to use FTP or not. This
an be done by using an authenti
ationme
hanism (say, using \ident" servi
e) and by
onsulting a lo
al database ofa

ess
ontrol lists. The notation { in the rules is used to denote \any" value.Rule 1 sr
-ip sr
-port dest-ip dest-port state a
tion144.16.167.98 { { 21 i SAW permRule 2 says that all normal outbound pa
kets on FTP
ontrol
onne
tionbe sent to the daemon. The kernel, however, may forward the pa
ket immedi-ately.Rule 2 sr
-ip sr
-port dest-ip dest-port state a
tion144.16.167.98 { { 21 n SDWThe rule above allows the FTP daemon to monitor all traÆ
 passingthrough the FTP
ontrol
hannel. In parti
ular, FTP
ommands su
h asPORT, RETR et
. are seen and if ne

essary, remembered by the FTP �re-wall daemon. For the PORT
ommand, the FTP daemon remembers the portnumber argument on the internal ma
hine. Whenever a RETR
ommand isseen, the FTP daemon
an
onsult lo
al database to see if the given user(whose identity and
apabilities are determined during
onne
tion initiation)has RETR permissions. It should be noted that su
h appli
ation spe
i�
 stateis maintained by the FTP se
urity daemon and not the kernel. Rule 2 doesnot disallow pa
ket
ow even if the user has issued a
ommand he/she is notauthorized. The se
urity is ensured by the following rule.Rule 3 sr
-ip sr
-port dest-ip dest-port state a
tion{ 20 { { i SAW permThe rule above says that any data
hannel initiation pa
ket (port 20) beinter
epted and sent to the FTP daemon. The kernel waits for an aÆrmativeanswer from the daemon. This rule together with Rule 2 provides a me
ha-nism to disallow unauthorized traÆ
. Suppose that a user is not allowed to useRETR
ommand of FTP. Then, the FTP daemon
an remember that a RETR

is being attempted when it sees the RETR
ommand on the
ontrol
hannel(Rule 2). The subsequent data
hannel
onne
tion pa
ket is inter
epted byRule 3. The daemon
an then send a negative response to the kernel whi
hwill
ause the kernel to reje
t the
onne
tion. However, the FTP
ontrol
on-ne
tion will still be a
tive and he
an issue another FTP
ommand. Thus, the
ommand based authorization
an be implemented.Rule 4 is used to let the daemon know of the termination of FTP
ontrol
hannel so that the required
leanup a
tion
an be taken.Rule 4 sr
-ip sr
-port dest-ip dest-port state a
tion144.16.167.98 { { 21 t SDWThe above set of rules assumed that the subnet has a valid IP address inthe Internet. Suppose that this is not the
ase. The FTP se
urity daemon maywish to masquerade its own IP address for the IP address argument of the port
ommand of FTP. This is a

omplished by repla
ing the Rule 2 by the Rule 2'.Rule 2' sr
-ip sr
-port dest-ip dest-port state a
tion144.16.167.98 { { 21 n SAW pa
ketThe SAW pa
ket value of the a
tion �eld
auses the kernel to send thepa
ket to the daemon and then to wait for the pa
ket to be delivered ba
kto it by the daemon. The daemon masquerades the IP address of the port
ommand (whenever appli
able) and returns the pa
ket to the kernel.The above example illustrates a possible way of using the me
hanismsprovided by the rule based inspe
tion to implement the desired se
urity poli-
ies. An advantage of the s
heme above has been to avoid sending pa
ketson the data
hannel of FTP to the appli
ation level. Another advantage isthat when a parti
ular FTP data transfer request is reje
ted, the FTP
ontrol
onne
tion is not disturbed and
an be used for subsequent requests.The example also illustrates a design goal that we have impli
itly triedto follow, namely, to keep the kernel simple and independent of appli
ationsemanti
s.

4 Path of an IP Pa
ket within Linux KernelLinux implements a proto
ol family as a series of
onne
ted layers of software[1℄, analogous to the proto
ol layers themselves. When a network devi
e re-
eives a pa
ket from the network it
onverts the re
eived data into a so
ketbu�er data stru
ture,
alled sk buff, and interrupts the CPU. The interruptpro
essing routine of the network devi
e adds the re
eived sk buff stru
tureinto a ba
klog queue (dis
arding the pa
ket if the queue is full). It then setsa
ag that indi
ates to the s
heduler that the network bottom half handlershould be
alled. The network bottom half handler is the portion of the kernelthat handles the
he
king, forwarding of the pa
ket to higher layers or to thedevi
e et
.When the network bottom half handler is run by the s
heduler, the han-dler passes the pa
ket to the appropriate higher level proto
ol (say, IP for IPpa
kets). In the
ase of IP pa
kets, the ip r
v() fun
tion is invoked. Thisfun
tion de
ides whether the pa
ket is destined for itself or not. If so, it passesthe pa
ket to the appropriate higher level proto
ol (say, TCP or UDP). If thepa
ket is destined for some other ma
hine, and this host is
on�gured as arouter (ip forwarding host), it
alls the fun
tion ip forward() to furtherpro
ess the pa
ket. This fun
tion
he
ks the standard pa
ket �lter rules beforede
iding whether to
all the underlying driver routine to send the pa
ket. Thenetwork bottom half handler
ode in Linux is written to be non-reentrant.5 Overview of Modi�
ations to the Linux Ker-nelThe main modi�
ations to the kernel were made in the bottom half handlerpart of the
ode. In the unmodi�ed kernel, the fun
tion ip r
v()
alls thefun
tion ip forward() to pro
ess pa
kets whi
h need to be routed to a dif-ferent ma
hine. In our modi�
ation, ip r
v()
alls spf ip forward() whi
himplements the rule based sele
tive pa
ket �ltering. Depending on the poli
ypres
ribed by the rules and the return value from the daemon (if appli
able),the pa
ket is either dropped or forwarded to the appropriate interfa
e by
allingip forward().The implementation of the rules me
hanism
an be
on
eptually divided

into two
omponents, namely, (1) maintaining the state of a TCP
onne
tionand (2) performing the a
tions for every pa
ket as pres
ribed by the rules. Thekey element in the latter
omponent is a robust me
hanism for
ommuni
a-tion between the kernel and the daemon. This is dis
ussed in the se
tion 7.Maintenan
e of the kernel state is dis
ussed in se
tion 6.Rules are read into the kernel using an \io
tl" like me
hanism. We haveused the existing so
ket interfa
e to set up the rules for the kernel. These rulesare read in at boot time or may be dynami
ally inserted by the appli
ation.The rules are maintained as a linked list and pa
kets are
he
ked against thelist to see if there is any mat
h.The rules fa
ility (
urrently) uses the ip fw pa
ket �lter implemenationwithin the Linux kernel, primarily to allow IP masquerading. The ip fw im-plementation supports generalization of the IP address �elds using the masksand supports IP masquerading. We assume that IP fragments are reassembledby enabling the \CONFIG IP ALWAYS DEFRAG" option.6 Conne
tion Authorization and State Main-tenan
eIn this se
tion, we dis
uss the detals of how
onne
tion state is maintainedand used in the routine spf ip forward().From the user's point of view, a
onne
tion
an be in one of the threeabstra
t states, namely, initiation, normal and termination. We implementthese abstra
tions using a more detailed state diagram as shown in Figure 1whi
h is a
tually a simpli�
ation of the possible states a TCP
onne
tion
ango through. We now dis
uss the transitions and the a
tions taken at ea
htransition.A state table is maintained by the routine spf ip forward() (basi
allyto verify if a pa
ket belongs to an authenti
ated
onne
tion). Every arrivingpa
ket is �rst
he
ked to verify whether the pa
ket belongs to an authorizedTCP
onne
tion or not. A
onne
tion is authorized by pro
essing the �rstSYN pa
ket as follows. When a SYN pa
ket arrives, a state table entry is
reated for the
onne
tion, identi�ed by the four �elds of the pa
ket, namely,sr
 ip, sr
 port, dest ip, dest port. The state of the
onne
tion is setto T SYN RECVD (see �gure 1). The rules are now
he
ked to �nd out the

T_
SAW_1_

FIN

3
T_ T_

AUTH_
FAILED

T_

AUTH_

SUCCEEDED

2

T_INIT

T_SAW_
1_FIN_
1_ACK

T_SAW_
2_FIN

T_
SAW_2_

FIN_
1_ACK

1

4

5

6

7 8

9 10

SYN_
RECVD

T_
FINAL_
WAIT

T_CLEANUP

11

12

13
14

Figure 1: Conne
tion Authenti
ation State Diagram

poli
y pres
ribed for this
onne
tion during the
onne
tion intiation state. Theresulting value
ould be any of the previously explained a
tion values.If the resulting value is either SDW or F, the state for the
onne
tion isset to T AUTH SUCCEEDED and the kernel fun
tion ip forward() is
alled.If the a
tion pres
ribed is SAW perm, the pa
ket is queued and the se
uritydaemon is
alled. The interfa
e between the kernel and the se
urity daemonwill be explained shortly. When and if the daemon returns with an aÆrmativeanswer, the state for the
onne
tion is set to T AUTH SUCCEEDED andthe kernel fun
tion ip forward is
alled. If the value returned is D, or thedaemon returns with a negative answer, the state of the
onne
tion is set toT AUTH FAILED state, then its state table entry is deleted.Sin
e TCP
onne
tions are duplex, on
e a
onne
tion is authorized, thenan entry
orresponding to opposite half of the duplex
onne
tion is
reatedand its state is also set to T AUTH SUCCEEDED. A
onne
tion whi
h is inthe authorized state (i.e, T AUTH SUCCEEDED) remains in this state untileither a FIN or RST pa
ket is seen.For all pa
kets that are not the intial SYN pa
ket, the following prin
ipleis followed. If an arriving pa
ket is not a SYN pa
ket, and the state table entryfor that
onne
tion is either absent or is in T AUTH FAILED state, then thepa
ket is dropped (and an ICMP error message sent ba
k). TCP pa
kets thatare part of the 3-way handshake proto
ol, but are not SYN pa
kets, namely,SYN-ACK and ACK pa
kets, are forwarded without
he
king against the rulesonly if the
onne
tion is in an authorized state. Otherwise su
h pa
kets aredropped. Similarly, if a rule spe
i�es some a
tion to be taken upon termina-tion of a
onne
tion, su
h a rule is triggered when the �rst RST or FIN pa
ketis seen. Subsequent FIN/ACK pa
kets are forwarded subje
t to the aboveprin
iple.The Table 1 summarizes ea
h of the transitions.7 Communi
ation between Kernel and Appli-
ation pro
essAn important part of the implementation was to provide a robust means of
ommuni
ation between the kernel and an appli
ation level pro
ess/daemon

Transition Re
eive A
tion1 Conne
tion Initiation(SYN)pa
ket Create State Table entry2 Authenti
ation Su

ess Continue with the Conne
tion3 Authenti
ation Failure Reje
t the Conne
tion4 Pa
ket of the Authenti
ated Conne
tion Forward5 FIN pa
ket Forward and Remember6 FIN/ACK Forward and Remember7 ACK for a FIN Forward and Remember8 FIN Forward and Remember9 ACK for FIN Forward and Remember10 ACK for FIN Forward and Remember11 ACK for FIN Forward and Final Wait12 Timeout Final Cleanup13 RST Forward and Cleanup14 Auth Failed for the Conne
tion Send an Error and CleanupTable 1: Transitionsimplementing the se
urity poli
ies. In this se
tion, we dis
uss this issue andthen dis
uss how data pa
kets are pro
essed.The rules based system requires the fa
ility that pa
kets be sele
tivelysent to the appli
ation level and that kernel should wait for a response froman appli
ation pro
ess. This however implies that the kernel
annot simplyuse msg snd and msg r
v primitives for
ommuni
ation. If msg r
v (generallyblo
king) is
alled by the kernel, the s
heduler dete
ts it as a
all from ana
tive instan
e of a bottom handler and will not s
hedule any pro
ess. Thiswill
ause the ma
hine to \hang" Therefore, we made use of the netlink driverinterfa
e dis
ussed below.7.1 Netlink DriverThe netlink driver interfa
e is a framework provided by the kernel and
an beused for dire
t
ommuni
ation between the kernel and an appli
ation spa
epro
ess. This
an be treated as a driver for a dummy devi
e with a
ertainmajor and minor number from the appli
ation pro
ess point of view. Readson that devi
e by the pro
ess will blo
k on the event that something is writtento a kernel queue. The kernel writes to the queue and wakes up the sleeping

pro
ess. Similarly, writes from the devi
e will trap into the kernel and exe
utethe \
allba
k handler" for the devi
e inside the kernel.7.2 Pro
essing TCP data pa
kets for authorized
on-ne
tionsA data pa
ket arriving on an authorized TCP
onne
tion is �rst
he
kedagainst the rules to determine the poli
y pres
ribed for the pa
ket. If thepa
ket is to be sent to the daemon and the kernel has to wait for a reply(SAW perm, SAW pa
ket), then the pa
ket is queued in a suspense table. Ifthe poli
y is either SAW perm or SAW pa
ket or SDW, the pa
ket is written to adevi
e managed by the netlink driver interfa
e. If the poli
y is either to Drop(D) the pa
ket or to Forward (F) the pa
ket, then the appropriate a
tion istaken without writing to the devi
e.An interesting part of the implementation was the
ommuni
ation ofthe daemon with the kernel, initiated by an a
tion of the type SAW perm orSAW pa
ket in a rule. The daemon writes to the devi
e, whi
h traps to thekernel and exe
utes the
allba
k handler for that devi
e. This
allba
k handler,written by us, (
alled trustd
allba
k())
he
ks the return value from thedaemon, updates the state of the
onne
tion in
ase of SYN pa
kets and/orforwards the pa
ket.7.3 Avoiding Reentering Non-reentrant
odeA subtle problem is possible in a straight forward implementation of our
all-ba
k handler trustd
allba
k. The handler
alls the fun
tion ip forwardwhi
h is a part of the net bottom half handler
ode. But the net bottom halfhandler
ode is non-reentrant. Here there is a possibility for a subtle ra
e
ondition wherein just when we
all ip forward() from the
allba
k handler,an interrupt might o

ur and after the interrupt the netbottom half handler iss
heduled. Thus we might have a
ondition in whi
h the ip forward() routineis reentered, whi
h
ould lead to malfun
tion.We therefore need to make use of a syn
hronization me
hanism in orderto avoid above ra
e
onditions. The solution we have implemented for theabove problem is to
reate a
riti
al se
tion out of the portion of non-reentrant
ode whi
h
ould possibly have been re-entered. This portion of the
ode has

been en
losed inside the primitives start bh atomi
() and end bh atomi
().If any part of the bottom-half handler is a
tive, then these primitives willtemporarily disable/enable the bottom half pro
essing respe
tively. It alsohas the additional advantage that interrupts are not disabled during this time{ only the bottom half pro
essing is disabled . This is suÆ
ient as this
odemight
ompete with a bottom half handler
ode and not dire
tly with interrupthandler
ode.8 Prototype DaemonThe protoype daemon
urrently implements fun
tionalities like user authenti-
ation and maintaining state related to some appli
ations - FTP and TELNET.For authenti
ation of the internal users, it
urrently uses the \ident" proto-
ol. It uses a simple database to store a

ess
ontrol lists
orresponding touserid, ma
hineid and appli
ation level
ommands. The daemon,
urrentlyimplements a prototype FTP proxy by remembering the FTP
ommands onthe
ontrol
hannel and using this state and the database to de
ide whetherto allow the subsequent data
onne
tion or not.9 Con
lusions and Future WorkIn this paper, we have presented a rules based kernel interfa
e whi
h
anbe used by the appli
ation level pro
ess to spe
ify sele
tive pa
ket relaying.The rules may be spe
i�ed to implement site and appli
ation-spe
i�
 se
uritypoli
ies in an eÆ
ient manner. A prototype of the rules me
hanism has beenimplemented by modifying portions of the Linux kernel (version 2.0.34). Thereare three advantages of this rules based me
hanism. Firstly, the kernel remainslightweight and does not need to be aware of appli
ation level proto
ols. Se
-ondly, the rules may be written so that every pa
ket need not be sent to theappli
ation. This redu
es the number of
ontext swit
hes between the kerneland the appli
ation-level pro
esses. Finally, the rules me
hanism is general inthe following sense. Rules may be written to inter
ept every pa
ket of a TCP
onne
tion, e�e
tively simulating an appli
ation proxy. On the other hand,rules may be written to simulate pa
ket �lters in whi
h no pa
ket is sent tothe appli
ation layer.

We are immediately preo

upied with
onsolidating the
urrent imple-mentation and making it more eÆ
ient. Several extensions to the
urrentwork are being explored. One possibility is to allow an appli
ation to spe
ifypatterns (regular expressions) and an a
tion trigger, su
h that if a mat
hingpattern is dete
ted by the TCP layer of the kernel of the �rewall ma
hine, thenit triggers a
hange in the way data
owing through the
onne
tion is moni-tored. Another possibility is to allow the mat
hed pattern to be modi�ed (in asimple manner). This fa
ility
ould be used to spe
ify IP masquerading as wellas to allow masquerading within the data protion of TCP (eg: masqueradingthe IP address argument of the PORT
ommand of the FTP appli
ation). Thislatter fa
ility avoids a potential
ontext-swit
h.Another dire
tion of work is the design and implementation of a kernelTCP level se
urity module. All appli
ation spe
i�
 se
urity daemons
ommu-ni
ate with this se
urity module rather than with the IP layer as
urrentlyimplemented. The se
urity module would implement TCP Sliding WindowProto
ol on the pa
kets sent to it by the rules me
hanism. This design wouldfurther easily allow pattern mat
hing on appli
ation data.10 A
knowledgementsThe authors are thankful to Profs. Deepak Gupta and Dheeraj Sanghi of theDepartment of Computer S
ien
e and Engineering at IIT Kanpur for valu-able dis
ussions and feedba
k. We are also thankful to Mr. Amitabh Roy ofthe ERNET proje
t, Department of Ele
tri
al Engineering at IIT Kanpur forvaluable guidan
e in the internals of Linux networking.Referen
es[1℄ David A.Rusling. Linux Kernel. URLhttp://www.metalab.un
.edu/mdw/LDP/tlk/tlk.html, 1996.[2℄ William R. Cheswi
k and Steven R. Bellovin. Firewalls and Internet Se-
urity. "Addison-Wesley Publishing Company", 1994.[3℄ M. Lee
h et al. So
ks Proto
ol Version 5, Internet Draft, Mar
h 1996.

[4℄ Mi
hael Be
k et al. Linux Kernel Internals. "Addison-Wesley PublishingCompany", 1996.[5℄ Sun Mi
rosystems In
. Deploying Suns
reen EFS White Paper. URLhttp://www.sun/
om, 1997.[6℄ Che
kpoint software Te
hnologies Ltd. Che
kpoint Firewall-1White Paper.URL http://www.
he
kpoint.
om, June 1997.

