
A Rule Based Interfae to the Kernel forSeletive Paket RelayingK N Gopinath, Sumit GangulyMarh 23, 20001 IntrodutionNetwork Firewalls have beome an integral part of the seurity of the om-puter installation at any organization, whether ommerial, aademi or oth-ers. Broadly speaking, �rewalls an be lassi�ed as follows [2℄. Paket �ltersare �rewalls that typially run at the network layer and use information inthe IP and TCP headers to ontrol traÆ. Examples within publi domaininlude Linux Paket �lter (ipfw), BSD Paket �lter et. Appliation level�rewalls typially are proxy servers whih relay data at the appliation level.Examples are fwtk from Trusted Information Systems (TIS), Squid et. Cir-uit level proxies, as typi�ed by SOCKS [3℄, authentiate a given user, host,appliation triple, and, otherwise relay data at the session level.Appliation level �rewalls are apable of enforing elaborate and �ne-grain appliation spei� seurity poliies, suh as ontent-based �ltering ofdata, and an provide good audit failities. A ommon disadvantage of bothappliation level proxy and iruit level proxy is that they require appliationdata to be opied bak and forth between the proxy daemon and the kernel atthe �rewall mahine. This in turn neessitates a ontext-swith between thekernel and the appliation daemon and vie-versa, virtually for every paket.Although suh a design ensures that general seurity poliies an be enfored,many site/appliation pairs may not have muh use for inspeting every paketowing through a onnetion. For suh site/appliation pairs, the overhead ofontext swithes for almost every paket due to the implementation of anappliation or iruit-level relay, inreases the load on the �rewall mahine.

The onern for reduing potentially large number of ontext-swithesat the �rewall mahine motivates that mehanisms be provided by the kernelthat allows pakets to be seletively sent to the appliation daemon as ditatedby seurity poliies. Suh a design ould signi�antly redue the load on a�rewall mahine by reduing the overhead of ontext swithes between thekernel and the appliation daemon at the �rewall. A lass of �rewalls withsuh harateristis is emerging and is variously alled as Stateful, Dynami orSmart Paket Filters [6, 5℄. A ommon harateristi of these �rewalls appearsto be the absene of a relay at the appliation-level or the iruit-level.As a simple example, onsider the port ommand transmitted as part ofthe standard FTP appliation. A stateful paket �lter (SPF) \remembers" theport number argument of the port ommand. A subsequent inoming dataonnetion is heked against the \remembered" value and is allowed only ifthe port numbers math.Several ommerially available �rewalls suh as Firewall-1 [6℄ are basedon the general idea of stateful paket �lters. However, the design and imple-mentation details that are publily available for these produts are too meagreto allow omparative or ritial evaluation. One of the deisions that needs tobe made in the implementation of SPFs is the amount of appliation spei�knowledge that needs to be built into the kernel. One possibility is that thekernel an be made aware of a signi�ant portion of the appliation protool.An example in this ategory is the IP masquerading module of Linux kernelversion 2.0.34. It embeds the funtionality of searhing for and rememberingthe arguments of a port ommand of the FTP appliation inside the kernel.Another possibility would be the design of mehanisms whih an be used byuser spae daemons to implement site-spei� seurity poliies but whih makethe kernel lightweight and independent of appliations.In this paper, we present a design and prototype implementation of ker-nel mehanisms that e�etively allow seletive paket relaying for TCP basedappliations. This is ahieved by keeping traÆ state/information both in thekernel and appliation spae. These kernel mehanisms are designed to belightweight, that is, the kernel is not required to be aware of the details ofappliation level protools. We further argue, by means of examples, that themehanisms provided by the kernel are suÆiently general to allow a ontin-uum of appliation level seurity poliies to be enfored, ranging from simple

paket �ltering to those whih an be provided by relays. The implementationhas been done by modifying the IP(v4) stak of Linux Kernel (version 2.0.34)running on an Intel x86 proessor. Using the kernel mehanisms, we have builta prototype seurity daemon for FTP and TELNET appliations whih runsas a user proess.The remainder of the paper is organized as follows. Setion 2 presents arule-based interfae to the kernel that an be used by appliation level seuritydaemons to speify whih pakets should be inspeted. Setion 3 presents adetailed example of how an FTP seurity daemon might use the rule-basedmehanism to enfore �ne-grain aess ontrol poliies. Setion 4 presents ashort desription of how an IP paket is proessed by the Linux kernel after itis reeived from the network interfae. Setion 5 presents an overview of ourimplementation. Setions 6 and 7 disuss the two main aspets of our kernelmodi�ation, namely, maintenane of onnetion state and ommuniationbetween appliation proess and the kernel respetively. Setion 8 disussesin brief our prototype implementation of an appliation level seurity daemonfor FTP and TELNET appliations. We present our onlusions and disussfuture work in Setion 9.2 Rule-Based Seletive Filtering of PaketsIn this setion, we present the rule based interfae to the kernel. In our sheme,the appliations an speify rules for the paket �ltering to the kernel. Theserules have the following form.<sr-ip,sr-msk,sr-port,dst-ip,dst-msk,dst-port,state,ation>The �elds sr-ip through dst-port are familiar arguments used bystandard paket �lters as well - di�erene lies in last two arguments, stateand ation. The argument state is a user level abstration of the possiblestates of a TCP onnetion. It an take one of the following three values� Connetion initiation (abbreviated as i), a onnetion is in this statewhen the �rst SYN paket is seen by the kernel.� Connetion termination (abbreviated as t), refers to the state enteredwhen the �rst RST or FIN is seen by the kernel and remains in this stateuntil the termination of the TCP onnetion is omplete.

� normal (abbreviated as n), refers to the normal state of a TCP onnetionwhere the data is owing through the onnetion. A normal state isentered when the three way handshake is omplete and exited when anRST or FIN is seen.The usefulness of this abstration will be made lear later with the helpof some examples.The ation argument of a rule an take one of the following values :� Send and Wait for permission (SAW perm) The kernel �rst sends thepaket to the daemon and waits for a yes/no reply from the daemon. Ifit reeives an aÆrmative reply, then the kernel forwards the paket tothe appropriate network interfae. Otherwise, it drops the paket andsends an imp message to the originator of the paket.� Send and Wait for paket (SAW paket). The kernel �rst sends thepaket to the daemon as in the ase for SAW perm. The daemon, in thisase, in addition to replying with a yes/no, an also modify the paketand send the modi�ed paket bak to the kernel. If the daemon returns ayes, the kernel sends the returned paket to the network interfae. Oth-erwise, it sends an imp message to the soure as before. Any appliationspeii� masquerading is handled using this mehanism.� Send and Do not Wait (SDW) The kernel sends a opy of the paketto the appliation daemon as well as forward the paket to the network.However, the kernel neither waits nor expets any response from thedaemon.� Forward Paket (F) The kernel forwards the paket to the network in-terfae without informing the daemon.� Drop Paket (D) The kernel drops the paket and sends an imp messageto the originating mahine.All rules apply to a simplex part of a duplex TCP onnetion. Thus, if thedaemon intends to have idential rules applied to both inoming and outgoingpakets of the same TCP onnetion, then, the rules have to be dupliatedwith the appropriate entities interhanged (e.g. soure address exhanged withdestination address).

Rules may be designed to implement a variety of seurity poliies span-ning a range between the generality provided by appliation level proxies, onone hand, to the spei�ity and eÆieny of simple paket �lters. To see this,assume that rules are written so that the kernel interepts eah paket andsends it to the appliation daemon and waits for the daemon to return thepaket to the kernel (SAW paket). This e�etively mimiks the design of anappliation level proxy. On the other hand, rules may be written so that ev-ery paket is either forwarded or rejeted without sending to the appliationlevel. This e�etively implements the design of a paket �lter. Also, moreinterestingly, rules may be written (depending on the appliation we want toproxy/site requirements) to seletively send pakets to the appliation daemonand still realize rih seurity poliies3 An Example FTP FirewallIn this setion, we show how a �ne grain aess ontrol poliy for the FTPappliation an be implemented using the rules desribed above. Suppose thata network administrator wishes to have the following aess ontrol poliy forinternal users of the FTP appliation.� An FTP ontrol onnetion may be authorized to go through based ona ombination of userid and mahine (or subnet).� Depending on userid and/or mahine id(subnet), ertain operations suhas get, put et may be seletively enabled or disabled.� The data owing through the data hannel need not be monitored.We speify four rules that implement the above seurity poliy. In order tokeep the rules short and simple, in this setion we avoid mentioning the mask�eld. We illustrate the rules assuming that the user initiates the FTP ap-pliation from an internal mahine, with the hypothetial Internet address of144.16.167.98. In general, this address ould represent a subnet of the loalarea network whih may be spei�ed with the help of a mask.Rule 1 says that onnetion initiation pakets for the FTP ontrol on-netion (port 21) originating from 144.16.167.98 be sent to the daemon andthe kernel should wait for an aÆrmative reply from the daemon. The FTP

seurity daemon an use this rule to hek if the user/mahine has the au-thorization to use FTP or not. This an be done by using an authentiationmehanism (say, using \ident" servie) and by onsulting a loal database ofaess ontrol lists. The notation { in the rules is used to denote \any" value.Rule 1 sr-ip sr-port dest-ip dest-port state ation144.16.167.98 { { 21 i SAW permRule 2 says that all normal outbound pakets on FTP ontrol onnetionbe sent to the daemon. The kernel, however, may forward the paket immedi-ately.Rule 2 sr-ip sr-port dest-ip dest-port state ation144.16.167.98 { { 21 n SDWThe rule above allows the FTP daemon to monitor all traÆ passingthrough the FTP ontrol hannel. In partiular, FTP ommands suh asPORT, RETR et. are seen and if neessary, remembered by the FTP �re-wall daemon. For the PORT ommand, the FTP daemon remembers the portnumber argument on the internal mahine. Whenever a RETR ommand isseen, the FTP daemon an onsult loal database to see if the given user(whose identity and apabilities are determined during onnetion initiation)has RETR permissions. It should be noted that suh appliation spei� stateis maintained by the FTP seurity daemon and not the kernel. Rule 2 doesnot disallow paket ow even if the user has issued a ommand he/she is notauthorized. The seurity is ensured by the following rule.Rule 3 sr-ip sr-port dest-ip dest-port state ation{ 20 { { i SAW permThe rule above says that any data hannel initiation paket (port 20) beinterepted and sent to the FTP daemon. The kernel waits for an aÆrmativeanswer from the daemon. This rule together with Rule 2 provides a meha-nism to disallow unauthorized traÆ. Suppose that a user is not allowed to useRETR ommand of FTP. Then, the FTP daemon an remember that a RETR

is being attempted when it sees the RETR ommand on the ontrol hannel(Rule 2). The subsequent data hannel onnetion paket is interepted byRule 3. The daemon an then send a negative response to the kernel whihwill ause the kernel to rejet the onnetion. However, the FTP ontrol on-netion will still be ative and he an issue another FTP ommand. Thus, theommand based authorization an be implemented.Rule 4 is used to let the daemon know of the termination of FTP ontrolhannel so that the required leanup ation an be taken.Rule 4 sr-ip sr-port dest-ip dest-port state ation144.16.167.98 { { 21 t SDWThe above set of rules assumed that the subnet has a valid IP address inthe Internet. Suppose that this is not the ase. The FTP seurity daemon maywish to masquerade its own IP address for the IP address argument of the portommand of FTP. This is aomplished by replaing the Rule 2 by the Rule 2'.Rule 2' sr-ip sr-port dest-ip dest-port state ation144.16.167.98 { { 21 n SAW paketThe SAW paket value of the ation �eld auses the kernel to send thepaket to the daemon and then to wait for the paket to be delivered bakto it by the daemon. The daemon masquerades the IP address of the portommand (whenever appliable) and returns the paket to the kernel.The above example illustrates a possible way of using the mehanismsprovided by the rule based inspetion to implement the desired seurity poli-ies. An advantage of the sheme above has been to avoid sending paketson the data hannel of FTP to the appliation level. Another advantage isthat when a partiular FTP data transfer request is rejeted, the FTP ontrolonnetion is not disturbed and an be used for subsequent requests.The example also illustrates a design goal that we have impliitly triedto follow, namely, to keep the kernel simple and independent of appliationsemantis.

4 Path of an IP Paket within Linux KernelLinux implements a protool family as a series of onneted layers of software[1℄, analogous to the protool layers themselves. When a network devie re-eives a paket from the network it onverts the reeived data into a soketbu�er data struture, alled sk buff, and interrupts the CPU. The interruptproessing routine of the network devie adds the reeived sk buff strutureinto a baklog queue (disarding the paket if the queue is full). It then setsa ag that indiates to the sheduler that the network bottom half handlershould be alled. The network bottom half handler is the portion of the kernelthat handles the heking, forwarding of the paket to higher layers or to thedevie et.When the network bottom half handler is run by the sheduler, the han-dler passes the paket to the appropriate higher level protool (say, IP for IPpakets). In the ase of IP pakets, the ip rv() funtion is invoked. Thisfuntion deides whether the paket is destined for itself or not. If so, it passesthe paket to the appropriate higher level protool (say, TCP or UDP). If thepaket is destined for some other mahine, and this host is on�gured as arouter (ip forwarding host), it alls the funtion ip forward() to furtherproess the paket. This funtion heks the standard paket �lter rules beforedeiding whether to all the underlying driver routine to send the paket. Thenetwork bottom half handler ode in Linux is written to be non-reentrant.5 Overview of Modi�ations to the Linux Ker-nelThe main modi�ations to the kernel were made in the bottom half handlerpart of the ode. In the unmodi�ed kernel, the funtion ip rv() alls thefuntion ip forward() to proess pakets whih need to be routed to a dif-ferent mahine. In our modi�ation, ip rv() alls spf ip forward() whihimplements the rule based seletive paket �ltering. Depending on the poliypresribed by the rules and the return value from the daemon (if appliable),the paket is either dropped or forwarded to the appropriate interfae by allingip forward().The implementation of the rules mehanism an be oneptually divided

into two omponents, namely, (1) maintaining the state of a TCP onnetionand (2) performing the ations for every paket as presribed by the rules. Thekey element in the latter omponent is a robust mehanism for ommunia-tion between the kernel and the daemon. This is disussed in the setion 7.Maintenane of the kernel state is disussed in setion 6.Rules are read into the kernel using an \iotl" like mehanism. We haveused the existing soket interfae to set up the rules for the kernel. These rulesare read in at boot time or may be dynamially inserted by the appliation.The rules are maintained as a linked list and pakets are heked against thelist to see if there is any math.The rules faility (urrently) uses the ip fw paket �lter implemenationwithin the Linux kernel, primarily to allow IP masquerading. The ip fw im-plementation supports generalization of the IP address �elds using the masksand supports IP masquerading. We assume that IP fragments are reassembledby enabling the \CONFIG IP ALWAYS DEFRAG" option.6 Connetion Authorization and State Main-tenaneIn this setion, we disuss the detals of how onnetion state is maintainedand used in the routine spf ip forward().From the user's point of view, a onnetion an be in one of the threeabstrat states, namely, initiation, normal and termination. We implementthese abstrations using a more detailed state diagram as shown in Figure 1whih is atually a simpli�ation of the possible states a TCP onnetion ango through. We now disuss the transitions and the ations taken at eahtransition.A state table is maintained by the routine spf ip forward() (basiallyto verify if a paket belongs to an authentiated onnetion). Every arrivingpaket is �rst heked to verify whether the paket belongs to an authorizedTCP onnetion or not. A onnetion is authorized by proessing the �rstSYN paket as follows. When a SYN paket arrives, a state table entry isreated for the onnetion, identi�ed by the four �elds of the paket, namely,sr ip, sr port, dest ip, dest port. The state of the onnetion is setto T SYN RECVD (see �gure 1). The rules are now heked to �nd out the

T_
SAW_1_

FIN

3
T_ T_

AUTH_
FAILED

T_

AUTH_

SUCCEEDED

2

T_INIT

T_SAW_
1_FIN_
1_ACK

T_SAW_
2_FIN

T_
SAW_2_

FIN_
1_ACK

1

4

5

6

7 8

9 10

SYN_
RECVD

T_
FINAL_
WAIT

T_CLEANUP

11

12

13
14

Figure 1: Connetion Authentiation State Diagram

poliy presribed for this onnetion during the onnetion intiation state. Theresulting value ould be any of the previously explained ation values.If the resulting value is either SDW or F, the state for the onnetion isset to T AUTH SUCCEEDED and the kernel funtion ip forward() is alled.If the ation presribed is SAW perm, the paket is queued and the seuritydaemon is alled. The interfae between the kernel and the seurity daemonwill be explained shortly. When and if the daemon returns with an aÆrmativeanswer, the state for the onnetion is set to T AUTH SUCCEEDED andthe kernel funtion ip forward is alled. If the value returned is D, or thedaemon returns with a negative answer, the state of the onnetion is set toT AUTH FAILED state, then its state table entry is deleted.Sine TCP onnetions are duplex, one a onnetion is authorized, thenan entry orresponding to opposite half of the duplex onnetion is reatedand its state is also set to T AUTH SUCCEEDED. A onnetion whih is inthe authorized state (i.e, T AUTH SUCCEEDED) remains in this state untileither a FIN or RST paket is seen.For all pakets that are not the intial SYN paket, the following prinipleis followed. If an arriving paket is not a SYN paket, and the state table entryfor that onnetion is either absent or is in T AUTH FAILED state, then thepaket is dropped (and an ICMP error message sent bak). TCP pakets thatare part of the 3-way handshake protool, but are not SYN pakets, namely,SYN-ACK and ACK pakets, are forwarded without heking against the rulesonly if the onnetion is in an authorized state. Otherwise suh pakets aredropped. Similarly, if a rule spei�es some ation to be taken upon termina-tion of a onnetion, suh a rule is triggered when the �rst RST or FIN paketis seen. Subsequent FIN/ACK pakets are forwarded subjet to the abovepriniple.The Table 1 summarizes eah of the transitions.7 Communiation between Kernel and Appli-ation proessAn important part of the implementation was to provide a robust means ofommuniation between the kernel and an appliation level proess/daemon

Transition Reeive Ation1 Connetion Initiation(SYN)paket Create State Table entry2 Authentiation Suess Continue with the Connetion3 Authentiation Failure Rejet the Connetion4 Paket of the Authentiated Connetion Forward5 FIN paket Forward and Remember6 FIN/ACK Forward and Remember7 ACK for a FIN Forward and Remember8 FIN Forward and Remember9 ACK for FIN Forward and Remember10 ACK for FIN Forward and Remember11 ACK for FIN Forward and Final Wait12 Timeout Final Cleanup13 RST Forward and Cleanup14 Auth Failed for the Connetion Send an Error and CleanupTable 1: Transitionsimplementing the seurity poliies. In this setion, we disuss this issue andthen disuss how data pakets are proessed.The rules based system requires the faility that pakets be seletivelysent to the appliation level and that kernel should wait for a response froman appliation proess. This however implies that the kernel annot simplyuse msg snd and msg rv primitives for ommuniation. If msg rv (generallybloking) is alled by the kernel, the sheduler detets it as a all from anative instane of a bottom handler and will not shedule any proess. Thiswill ause the mahine to \hang" Therefore, we made use of the netlink driverinterfae disussed below.7.1 Netlink DriverThe netlink driver interfae is a framework provided by the kernel and an beused for diret ommuniation between the kernel and an appliation spaeproess. This an be treated as a driver for a dummy devie with a ertainmajor and minor number from the appliation proess point of view. Readson that devie by the proess will blok on the event that something is writtento a kernel queue. The kernel writes to the queue and wakes up the sleeping

proess. Similarly, writes from the devie will trap into the kernel and exeutethe \allbak handler" for the devie inside the kernel.7.2 Proessing TCP data pakets for authorized on-netionsA data paket arriving on an authorized TCP onnetion is �rst hekedagainst the rules to determine the poliy presribed for the paket. If thepaket is to be sent to the daemon and the kernel has to wait for a reply(SAW perm, SAW paket), then the paket is queued in a suspense table. Ifthe poliy is either SAW perm or SAW paket or SDW, the paket is written to adevie managed by the netlink driver interfae. If the poliy is either to Drop(D) the paket or to Forward (F) the paket, then the appropriate ation istaken without writing to the devie.An interesting part of the implementation was the ommuniation ofthe daemon with the kernel, initiated by an ation of the type SAW perm orSAW paket in a rule. The daemon writes to the devie, whih traps to thekernel and exeutes the allbak handler for that devie. This allbak handler,written by us, (alled trustd allbak()) heks the return value from thedaemon, updates the state of the onnetion in ase of SYN pakets and/orforwards the paket.7.3 Avoiding Reentering Non-reentrant odeA subtle problem is possible in a straight forward implementation of our all-bak handler trustd allbak. The handler alls the funtion ip forwardwhih is a part of the net bottom half handler ode. But the net bottom halfhandler ode is non-reentrant. Here there is a possibility for a subtle raeondition wherein just when we all ip forward() from the allbak handler,an interrupt might our and after the interrupt the netbottom half handler issheduled. Thus we might have a ondition in whih the ip forward() routineis reentered, whih ould lead to malfuntion.We therefore need to make use of a synhronization mehanism in orderto avoid above rae onditions. The solution we have implemented for theabove problem is to reate a ritial setion out of the portion of non-reentrantode whih ould possibly have been re-entered. This portion of the ode has

been enlosed inside the primitives start bh atomi() and end bh atomi().If any part of the bottom-half handler is ative, then these primitives willtemporarily disable/enable the bottom half proessing respetively. It alsohas the additional advantage that interrupts are not disabled during this time{ only the bottom half proessing is disabled . This is suÆient as this odemight ompete with a bottom half handler ode and not diretly with interrupthandler ode.8 Prototype DaemonThe protoype daemon urrently implements funtionalities like user authenti-ation and maintaining state related to some appliations - FTP and TELNET.For authentiation of the internal users, it urrently uses the \ident" proto-ol. It uses a simple database to store aess ontrol lists orresponding touserid, mahineid and appliation level ommands. The daemon, urrentlyimplements a prototype FTP proxy by remembering the FTP ommands onthe ontrol hannel and using this state and the database to deide whetherto allow the subsequent data onnetion or not.9 Conlusions and Future WorkIn this paper, we have presented a rules based kernel interfae whih anbe used by the appliation level proess to speify seletive paket relaying.The rules may be spei�ed to implement site and appliation-spei� seuritypoliies in an eÆient manner. A prototype of the rules mehanism has beenimplemented by modifying portions of the Linux kernel (version 2.0.34). Thereare three advantages of this rules based mehanism. Firstly, the kernel remainslightweight and does not need to be aware of appliation level protools. Se-ondly, the rules may be written so that every paket need not be sent to theappliation. This redues the number of ontext swithes between the kerneland the appliation-level proesses. Finally, the rules mehanism is general inthe following sense. Rules may be written to interept every paket of a TCPonnetion, e�etively simulating an appliation proxy. On the other hand,rules may be written to simulate paket �lters in whih no paket is sent tothe appliation layer.

We are immediately preoupied with onsolidating the urrent imple-mentation and making it more eÆient. Several extensions to the urrentwork are being explored. One possibility is to allow an appliation to speifypatterns (regular expressions) and an ation trigger, suh that if a mathingpattern is deteted by the TCP layer of the kernel of the �rewall mahine, thenit triggers a hange in the way data owing through the onnetion is moni-tored. Another possibility is to allow the mathed pattern to be modi�ed (in asimple manner). This faility ould be used to speify IP masquerading as wellas to allow masquerading within the data protion of TCP (eg: masqueradingthe IP address argument of the PORT ommand of the FTP appliation). Thislatter faility avoids a potential ontext-swith.Another diretion of work is the design and implementation of a kernelTCP level seurity module. All appliation spei� seurity daemons ommu-niate with this seurity module rather than with the IP layer as urrentlyimplemented. The seurity module would implement TCP Sliding WindowProtool on the pakets sent to it by the rules mehanism. This design wouldfurther easily allow pattern mathing on appliation data.10 AknowledgementsThe authors are thankful to Profs. Deepak Gupta and Dheeraj Sanghi of theDepartment of Computer Siene and Engineering at IIT Kanpur for valu-able disussions and feedbak. We are also thankful to Mr. Amitabh Roy ofthe ERNET projet, Department of Eletrial Engineering at IIT Kanpur forvaluable guidane in the internals of Linux networking.Referenes[1℄ David A.Rusling. Linux Kernel. URLhttp://www.metalab.un.edu/mdw/LDP/tlk/tlk.html, 1996.[2℄ William R. Cheswik and Steven R. Bellovin. Firewalls and Internet Se-urity. "Addison-Wesley Publishing Company", 1994.[3℄ M. Leeh et al. Soks Protool Version 5, Internet Draft, Marh 1996.

[4℄ Mihael Bek et al. Linux Kernel Internals. "Addison-Wesley PublishingCompany", 1996.[5℄ Sun Mirosystems In. Deploying Sunsreen EFS White Paper. URLhttp://www.sun/om, 1997.[6℄ Chekpoint software Tehnologies Ltd. Chekpoint Firewall-1White Paper.URL http://www.hekpoint.om, June 1997.

