
 Bastille Linux: Security Through
Transparency

 Jon Lasser

 University of Maryland, Baltimore County (UMBC)
 jon@umbc.edu

 2000 March 24

 Overview

 A Brief History of Bastille Linux

 Philosophy

 Step-By-Step Overview

 Lessons Learned

 The "Linux Problem", Ca. Q3 ’98

 Linux spreading rapidly in universities, but no centralized
control

 Inexperienced administrators
 Wide-open systems
 Infrequent security updates

 . . . and therefore frequent break-ins

 The "Linux Problem"

 It’s hard to do the right thing:

 Linux is easy to install

 ... but hard to administer
(securely!)

 What UMBC Linux Got Wrong

 Our most serious failure was social, not technical:

 Despite the very large number of Linux users, especially at
universities, we did not seek to share with others performing

similar work.

 Had we shared our plans and results with other schools, we
would have duplicated less work and been able to

accomplish more.

 Sans ’99 Conference, project proposed

 improve university security

 harden defaults

 discourge dangerous and obsolete tools

 simplify customization of install

 to be based on Red Hat 6.0.

 Why Red Hat 6?

 Market share

 Easy for beginners to install

 Fairly open by default

 Some Distributions Have Hardening Software
 SuSe
 Mandrake 7

 ...and Away From Bastille Linux?

 little happened immediately

 Admins are busy folk

 project had a distant payoff

 Red Hat 6.0 is more secure out-of-box, so pressure off.

 Difficult to make Red Hat’s devel model work over the ’net
 Monolithic, too Slow at Internet Speeds
 Network and server reliability is still an issue
 It’s too hard to keep up with Red Hat!

 A Change of Direction...

 Instead of a Distribution, a Hardening script:

 Full Compatibility

 Community Support

 Less work to update for new releases

 Adaptable to other distributions

 Avoid export concerns by simply installing crypto via ftp from Europe

 Releases To Date (1)

 1.0
 The Conference Release

 1.0.1
 Brown Paper Bag Release

 1.0.2
 Additional Bugfixes

 Releases To Date (2)

 1.0.3
 Red Hat 6.1 support
 Included automation examples

 1.0.4
 TUI
 Defaults for all choices
 No more single-user mode
 Mandrake 6.x support
 Bugfixes

 The Future

 Incremental Development
 patch security
 further audits and granularity
 better logging
 additional security
 stateful firewall

 "Version 2.0" (New architecture)
 Multiple Back-ends possible
 Multiple Front-ends possible
 Canonicalize data in the middle
 More intelligent standard back-end

 Philosophy of Bastille Linux (1)

 A Living, Executable "Best Practices" Document

 Based on Community Resources:

 SANS Securing Linux Step-By-Step

 Kurt Seifried’s Linux Administrator’s Security Guide

 Leveraged Existing Code

 Jay Beale’s Solaris Hardening Scripts

 Philosophy of Bastille Linux (2)

 Grounded in Open-Source Methodology:

 Many eyes (audit)

 Many minds (experience)

 Many arguments (community)

 How Can We Stop Crackers?

 What Bastille Linux Does

 Apply vendor-produced patches
 Disable unnecessary services
 Secure default configurations
 Set up a firewall

 What Bastille Linux Doesn’t Do (Yet)

 Automated techniques to scan for crackers
 Automated protection from certain attacks (StackGuard)

 Basic Features Walkthrough (1)

 Completely Modular

 Install RPM Updates
 Dynamic list from our server
 As secure as commercial vendors

 SUID and Permissions Audits
 Permissions audit based on SANS document, with changes
 SUID audit granular, Permissions audit not (yet!)

 Basic Features Walkthrough (2)

 Account Security
 Use md5 password hashing
 Use shadow passwords

 Create Second Admin Account
 Like root, with different name
 Root logins become a sign of intrusion
 Controversial, but useful for some
 Remember, all Bastille Linux functionality is optional!

 Install SSH

 Disable Dangerous R* Utilities
 rlogin, rsh, rcp, etc.
 Create empty .rhosts file for each user, root owned, mode 0400, empty
 Mode 0400 empty /etc/hosts.equiv
 Use ssh, scp, etc. instead

 Basic Features Walkthrough (3)

 Protect Bootloader
 Require password for single-user mode
 Reduce prompt delay
 Alter permissions to prevent users reading (necessary for passworded mode)

 Restrict Console Reboots (Control-Alt-Delete)

 Remote Access Restrictions
 Extra logging for portscans
 Security risks of telnet and FTP discussed
 TCP Wrapper host-specific configuration
 "Authorized Users Only" banners

 For Servers, Disable Compilers
 A pinch more security, though admittedly not much

 Prevent remote root logins

 Basic Features Walkthrough (4)

 Limit console logins to administrators

 Denial-of-Service Protections
 Per-user limits
 No core files
 Limit users’ file size

 Additional Logging
 Direct to virtual consoles 7 and 8
 Remote loghost
 Separate local kernel and system logs
 Separate local user login log
 Process Accounting

 Basic Features Walkthrough (5)

 Sendmail Configuration
 Fix most known holes
 Turn off daemon mode
 Turn off VRFY/EXPN (anti-spam/recon)
 Red Hat 6 already restricts relaying

 Restrict Cron Access

 Disable Unnecessary Daemons

 Basic Features Walkthrough (6)

 Chrooted DNS server
 Set this up, even if BIND not running, in case it’s enabled later
 Deactivate DNS server by default

 Apache Configuration
 Deactivate, or bind to localhost only
 Don’t follow symbolic links
 Disable server-side includes
 Disable CGI scripts

 FTP Configuration
 Disable user privileges
 Disable anonymous access

 Features Walkthrough: Firewall

 Aimed at experts (Created interactively, good defaults)

 Trusted, Public, and Internal interfaces

 TCP, UDP, ICMP audit logging

 Different services on different interface classes

 TCP, UDP, ICMP blocking

 Block source spoofed packets

 IP Masquerading

 Features: Automation

 Set up one machine, use the same configuration on
hundreds or thousands of boxes

 Several default setups:

 Firewall

 Mail server

 Web server

 Workstation

 Lessons Learned

 ESR’s Cathedral and the Bazaar a Standard Model.

 1. Every good work of software starts by scratching a developer’s personal

itch.
 Our Verdict:True

 2. Good programmers know what to write. Great ones know what to rewrite
(and reuse).

 Our Verdict:Unclear --- tending towards true

 3. ‘‘Plan to throw one away; you will, anyhow.’’ (Fred Brooks, ‘‘The
Mythical Man-Month’’, Chapter 11)

 Our Verdict:True!

 ESR’s Aphorisms (2)

 4. If you have the right attitude, interesting problems will find you.
 Our Verdict:Unclear

 5. When you lose interest in a program, your last duty to it is to hand it off
to a competent successor.

 Our Verdict: N/A (Hasn’t Happened Yet)

 6. Treating your users as co-developers is your least-hassle route to rapid
code improvement and effective debugging.

 Our Verdict:True

 7. Release early. Release often. And listen to your customers.
 Our Verdict:True

 ESR’s Aphorisms (3)

 8. Given a large enough beta-tester and co-developer base, almost every

problem will be characterized quickly and the fix obvious to someone.
 Our Verdict:True (we think)

 9. Smart data structures and dumb code works a lot better than the other
way around.

 Our Verdict:True

 10. If you treat your beta-testers as if they’re your most valuable resource,
they will respond by becoming your most valuable resource.

 Our Verdict:True

 ESR’s Aphorisms (4)

 11. The next best thing to having good ideas is recognizing good ideas

from your users. Sometimes the latter is better.
 Our Verdict:True

 12. Often, the most striking and innovative solutions come from realizing
that your concept of the problem was wrong.

 Our Verdict:True

 13. ‘‘Perfection (in design) is achieved not when there is nothing more to
add, but rather when there is nothing more to take away.’’

 Our Verdict:Unclear

 ESR’s Aphorisms (5)

 14. Any tool should be useful in the expected way, but a truly great tool

lends itself to uses you never expected.
 Our Verdict:Unclear

 15. When writing gateway software of any kind, take pains to disturb the
data stream as little as possible -- and *never* throw away information
unless the recipient forces you to!

 Our Verdict: N/A (Not gateway software)

 16. When your language is nowhere near Turing-complete, syntactic sugar
can be your friend.

 Our Verdict:True

 ESR’s Aphorisms (6)

 17. A security system is only as secure as its secret. Beware of

pseudo-secrets.
 Our Verdict:True -- In fact, this has been a guiding principle all along!

 18. To solve an interesting problem, start by finding a problem that is
interesting to you.

 Our Verdict:True

 19: Provided the development coordinator has a medium at least as good
as the Internet, and knows how to lead without coercion, many heads are
inevitably better than one.

 Our Verdict:True

 The End

 Please mail questions or comments to jon@umbc.edu
 The Bastille Linux homepage is http://bastille-linux.sourceforge.net/

 To subscribe to the announcement mailing list, send mail to
bastille-linux-announce-request@lists.bastille-linux.org

 To subscribe to the discussion list, please send mail to
bastille-linux-discuss-request@lists.bastille-linux.org

