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Abstract 

The Network File System (NFS) Version 4 is a 
new distributed file system similar to previous 
versions of NFS in its straightforward design, 
simplified error recovery, and independence of 
transport protocols and operating systems for file 
access in a heterogeneous network. Unlike earlier 
versions of NFS, the new protocol integrates file 
locking, strong security, operation coalescing, and 
delegation capabilities to enhance client 
performance for narrow data sharing applications 
on high-bandwidth networks.  Locking and 
delegation make NFS stateful, but simplicity of 
design is retained through well-defined recovery 
semantics in the face of client and server failures 
and network partitions. 

This paper describes the new features of the 
protocol, focusing on the security enhancements, 
integrated locking support, changes to fully 
support Windows file sharing semantics, support 
for high performance data sharing, and the design 
points that enhance performance on the Internet.  
We describe applications of NFS Version 4. 
Finally, we describe areas for future work. 

1. Background 

The Network File System, or NFS, was developed 
by Sun Microsystems to provide distributed 
transparent file access in a heterogeneous network. 
In the summer of 1998, Sun Microsystems ceded 
change control of NFS to the Internet Engineering 
Task Force [RFC2339].  IETF assumed the 
responsibility to create a new version of NFS for 
use on the Internet.   

Prior to the formation of the IETF NFS Version 
4 working group, Sun Microsystems deployed 
portions of the technology leading up to NFS 
Version 4, notably WebNFS [RFC2054, 
RFC2055] and strong authentication with Kerberos 
[MIT] within a GSS-API framework [RFC2203].  
In August 1998 Sun submitted a strawman NFS 
Version 4 protocol specification to the newly 
formed working group. Following discussions in 
the working group, and contributions by many 
members, prototype implementations of the 
protocol began to prove out the concepts.  Initial 
implementation testing of prototypes (including a 
Java prototype) based on the working drafts 
occurred in October 1999 to verify the design.  The 
specification was submitted to the Internet 

Engineering Steering Group for consideration as a 
Proposed Standard in February 2000.  Further 
implementation work and interoperability testing 
occurred early March 2000.  

1.1.  Requirements 

As part of the IETF process, Sun Microsystems 
submitted an initial draft of a requirements 
document for NFS Version 4 to the newly formed 
working group.  After wide review and some 
minor revisions [RFC2624], the requirements for 
NFS Version 4 were specified to be: 

• Improved access and good performance on the 
Internet 

• Strong security, with security negotiation built 
into the protocol 

• Enhanced cross-platform interoperability 
• Extensibility of the protocol 

Additionally, we sought improvements in 
locking and performance for narrow data sharing 
applications. 

2. The NFS Version 4 protocol 

 Old Marley was as dead as a door-nail. 
                       Dickens, A Christmas Carol 

The NFS Version 4 protocol is stateful.  

NFS is a distributed file system designed to be 
operating system independent.  It achieves this by 
being relatively simple in design and not relying 
too heavily on any particular file system model.  
NFS is built on top of the ONC Remote Procedure 
Protocol [RFC1831].  A Remote Procedure Call 
(RPC or procedure) defines a procedural model for 
distributed applications, and is the underlying 
architecture of all NFS implementations.  The 
External Data Representation (XDR) [RFC1832] 
enables heterogeneous operation by defining a 
canonical data encoding over the wire.  A server in 
the RPC architecture provides a service by 
supporting a set of remote procedures in a well-
defined distributed application.  A client is a user 
of those services. 

The first major structural change to NFS 
compared to prior versions is the elimination of 
ancillary protocols.  In NFS Versions 2 and 3, the 
Mount protocol was used to obtain the initial 
filehandle, while file locking was supported via the 
Network Lock Manager protocol. NFS Version 4 
is a single protocol that uses a well-defined port, 
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which, coupled to the use of TCP, allows NFS to 
easily transit firewalls to enable support for the 
Internet.  As in WebNFS, the use of initialized 
filehandles obviates the need for a separate Mount 
protocol [RFC1813]. Locking has been fully 
integrated into the protocol – which was also 
required to enable mandatory locking.  The lease-
based locking support adds significant state (and 
concomitant error recovery complexity) to the NFS 
Version 4 protocol. 

Another structural difference between NFS 
Version 4 and its predecessors is the introduction 
of a COMPOUND RPC procedure that allows the 
client to group traditional file operations into a 
single request to send to the server.  In NFS 
Versions 2 and 3, all actions were RPC procedures.  
NFS Version 4 is no longer a “simple” RPC-based 
distributed application.  In NFS Version 4, work is 
accomplished via operations. An operation is a file 
system action that forms part of a COMPOUND 
procedure.  NFS Version 4 operations correspond 
functionally to RPC procedures in former versions 
of NFS.  The server in turn groups the operation 
replies into a single response.  Error handling is 
simple on the server – evaluation proceeds until 
the first error or last operation whereupon the 
server returns a reply for all evaluated operations.  

We introduced the COMPOUND procedure to 
reduce network round trip latency for related 
operations, which can be costly over a WAN (for 
example, the Internet).  The model NFS Version 4 
uses implies the NFS layer engages more closely 
in the marshalling and unmarshalling of data, 
which complicates implementation.  NFS Version 
3 was designed to be easy to implement given an 
NFS Version 2 implementation.  NFS Version 4 
did not have that requirement. The only RPC 
procedures in NFS Version 4, in the strict sense, 
are NULL and COMPOUND, and their callback 
analogues. 

Table 1. groups the operations (or in the case of 
NFS Version 2 and 3, RPC procedures) 
functionally for purposes of comparison.  The 
comparison is a little unfair since the Network 
Lock Manager, Status Monitor and Mount protocol 
procedures needed by NFS Versions 2 and 3 are 
not shown.  Significant changes occurred to data 
structures and semantics of existing operations, 
some of which are described below. 

The NFS Version 4 introduction of the stateful 
operations OPEN and CLOSE is another major 
structural difference.  NFS Versions 2 and 3 were 
essentially stateless. LOOKUP was the closest 

analogue to an open operation in earlier versions of 
NFS.  However, a LOOKUP procedure did not 
create state on the server.  The introduction of the 
stateful OPEN and CLOSE operations is required to 
ensure atomicity of share reservations as defined 
for Windows file sharing [CIFS], and to support 
exclusive creates.  Additionally, the OPEN 
operation provides the server the ability to delegate 
authority to a client, allowing aggressive caching 
of file data and locking state.  

The CREATE operation of NFS Version 4 
differs from an NFS Version 3 CREATE in that it is 
only used to create special file objects such as 
symbolic links, directories, and special device 
nodes.  To ensure correct share reservation 
semantics, the regular file CREATE procedure of 
NFS Versions 2 and 3 is replaced by the NFS 
Version 4 OPEN operation (with a create bit set). 
CREATE and REMOVE in NFS Version 4 subsumes 
the MKDIR and RMDIR directory functionality of 
prior versions of NFS. 

NFS Version 4 servers depart from the 
semantics of previous NFS versions in requiring 
LOOKUP requests to cross mount points on the 
server.   In NFS Version 4, a LOOKUP is very 
simple.  It only sets the current filehandle to point 
at the file object resolved.  Attributes (including 
the filehandle itself) can be obtained with a 
subsequent GETATTR operation in the same 
COMPOUND procedure. Additionally, as defined in 
WebNFS, LOOKUP takes a multi-component 
pathname.  

Previous versions of NFS assigned special 
semantics to the directory entries  “.” and “..”  
NFS Version 4 assigns no special meaning to these 
names, and requires the client to explicitly use the 
LOOKUPP operation to obtain the filehandle of a 
parent directory. 

The Weak Cache Consistency information 
(pre- and post-operation attributes) of NFS Version 
3 has been removed.  Instead, CREATE, LINK, 
OPEN, REMOVE, and RENAME return a data structure  
change_info  (typically implemented as a 
modified time) that provides information on 
whether the directory underlying the object 
changed during the operation. The client can use 
this information to decide whether to flush cached 
directory information in the face of concurrent 
client modifications.   

Underlying the NFS Version 4 protocol is 
mandated strong security via an extensible 
authentication architecture built on GSS-API. The 
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client determines the authentication type required 
for a given file’s access using the SECINFO 
operation.  Initial authentication flavors supported 
in this framework are Kerberos and LIPKEY. NFS 
Version 4 defines a Windows NT and Unix-
compatible access control model. 

The NFS Version 3 directory scanning 
operation READDIRPLUS procedure was dropped, 
and its functionality of providing attributes with 
each directory entry (including the filehandle) is 
now supported by the READDIR operation.  This 
“bulk LOOKUP” functionality is used to initialize 
attribute caches when first scanning directories to 
reduce latency introduced by a (now unneeded) 
subsequent stream of LOOKUP operations. 

Attributes of the file system underlying a file 
system object (for example, file system free space) 
exist in NFS Version 4 as attributes of the file 
system object itself.  This replaces the NFS 
Version 3 procedures FSSTAT, FSINFO and 
PATHCONF with an NFS Version 4 GETATTR  
operation of the desired attributes.  

As in NFS Version 3, file access rights are 
checked on the server, not the client.  However, in 
NFS Version 4, file access rights are checked as 
part of an explicit OPEN operation instead of the 
NFS Version 3 LOOKUP and ACCESS procedure 
sequence.  In retrospect, the introduction of the 
separate ACCESS procedure to handle access 
checking in conjunction with an initial LOOKUP 
(associated with a client application opening a file) 
hurt performance by introducing further unwanted 
network latency.  The explicit ACCESS operation is 
retained in NFS Version 4 to support the UNIX 
access(2) programming interface which does 
not require the file to be opened. 

NFS Version 4 supports file system replication 
and migration, but details of server-to-server file 
system transfers are undefined. 

Generalized file attributes are extensible 
through the addition of named attributes. 

File names in operations that use them are 
UTF-8 encoded UCS strings [UTF8] to enable 
internationalization. 

3. File system model and sharing 

A file system is an implementation of a single file 
name space containing files, and provides the basis 
for administration and space allocation. Associated 
with each file system is a file system identifier, or 
fsid, which is a 128-bit per-server unique 

Table 1. NFS operations by version - at a glance 
Version 2 Version 3 Version 4 
NULL  NULL NULL 

Compound operations 
  COMPOUND 
  NVERIFY 
  VERIFY 
  Reserved Operation 2 

OPEN/CLOSE operations 
  OPEN 
  OPENATTR 
  OPEN_CONFIRM 
  OPEN_DOWNGRADE 
  CLOSE 

Delegation operations 
  DELEGPURGE 
  DELEGRETURN 
  SETCLIENTID 
  SETCLIENTID_CONFIRM 

Client callback procedures for delegation 
  CB_NULL 
  CB_COMPOUND 
  CB_GETATTR 
  CB_RECALL 

Locking operations 
  LOCK 
  LOCKT 
  LOCKU 
  RENEW 

Filehandle operations 
  PUTPUBFH 
  PUTROOTFH 
  GETFH 
  RESTOREFH 
  SAVEFH 

Security operations 
 ACCESS ACCESS 
  SECINFO 

Traditional file operations 
LOOKUP LOOKUP LOOKUP 

  LOOKUPP 
GETATTR GETATTR GETATTR 
SETATTR SETATTR SETATTR 
LINK LINK LINK 

READDIR READDIR READDIR 
 READDIRPLUS  

READLINK READLINK READLINK 
CREATE CREATE CREATE 
MKDIR MKDIR  

 MKNOD  
REMOVE REMOVE REMOVE 
RMDIR RMDIR  
RENAME RENAME RENAME 
SYMLINK SYMLINK  
READ READ READ 
WRITE WRITE WRITE 

 COMMIT COMMIT 
STATFS FSSTAT  

 FSINFO  
 PATHCONF  

Never implemented 
ROOT   

WRITECACHE   

18 ops 22 ops 42 ops 
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identifier. A file is a single named object 
consisting of data and attributes, residing in a file 
system. A regular file is a simple byte stream – not 
a directory, symbolic link or special (device) file. 
A filehandle uniquely identifies a file on a server 
(and consequently in a file system on that server).  

In all versions of NFS, a server contains one or 
more file systems that are exported to clients.  

However, in NFS Version 4, a server presents a 
single seamless view of all the exported file 
systems to a client. A client can move up and 
down the name space, traversing directories 
without regard to the structure of the file systems 
on the server.  The client can notice file system 
transitions on the server by observing that the 
fsid changes.  Removing the requirement that a 
client mount the different exported file systems of 
a server separately rendered the NFS Version 2 
and file system attribute procedures useless.  The 
server now reports file system attributes such as 
the file system free space for the specific file 
system underlying a file system object. 

The client accesses the exported file systems of 
the server by using the PUTROOTFH operation to 
load the filehandle of the root of the file systems  
tree into the current file handle for subsequent 
operations. 

3.1.  Exporting file systems 

An NFS Version 4 server exports file systems 
similarly to prior versions of NFS.  The export 
operation makes available only those file systems, 
or portions of file systems, desired to be shared 
with clients.  Further, the export operation allows 
the administrator to specify the acceptable security 

flavors by which a client can access a given 
exported file system. 

3.2.  Pseudo-file systems 

The subject may appear an insignificant one, but 
we shall see that it possesses some interest. 
        Darwin, The Formation of Vegetable 
Mould… 

On most operating systems, the name space 
describes the set of available files arranged in a 
hierarchy.  When a system acts as a server to share 
files, it typically shares (or “exports”) only a 
portion of its name space, excluding perhaps local 
administration and temporary directories.  

Consider a file server that exports the 
following directories: 

 /vol/vol0 
 /vol/vol1 
 /backup/archive 

The server provides a single view of the exported 
file systems to the client as shown in Figure 1. 

In NFS Version 4, a server’s shared name 
space is a single hierarchy.  In the example 
illustrated in Figure 1., the export list hierarchy is 
not connected. When a server chooses to export a 
disconnected portion of its name space, the server 
creates a pseudo-file system to bridge the 
unexported portions of the name space allowing a 
client to reach the export points from the single 
common root. A pseudo-file system is a structure 
containing only directories, created by the server 
having a unique fsid, that allows a client to 
browse the hierarchy of exported file systems.   

 The server view 

/ 

 vol backup 

vol1 vol0 archive 

admin 

vol2 

What the client sees 

Figure 1. The Pseudo-file system 

  export 

/ 

 vol backup 

vol1 vol0 archive 

The Pseudo-file system constructed 
by the server 
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The client’s view of the pseudo-file system is 
limited to those paths that lead to exported file 
systems.  Because /vol/vol2 and 
/admin are not exported in this example, they do 
not appear to the client during browsing operations 
as shown in the client’s view in Figure 1. 

4. The COMPOUND procedure 

NFS is an RPC-based distributed application.    
Previous versions of the NFS protocol were 
defined only in terms of remote procedure calls. 
This approach has the significant limitation that 
each RPC call defines a single request-response 
transaction between the client and server incurring 
a minimum network latency cost for each 
transaction. A client may actually be required to 
transmit a series of related requests on the network 
to accomplish a single client operation. 

NFS Version 4 introduces the COMPOUND RPC 
procedure.  The COMPOUND procedure groups 
multiple related operations into a single RPC 
packet.  The RPC response to a COMPOUND 
procedure contains the replies to all the operations.  
Because of the simplicity of error handling 
(evaluation of the operations stops on first error), it 
may be unwise to attempt grouping unrelated 
operations into a single COMPOUND procedure. 

4.1.  An example 

The following denotations represent NFS 
transactions in this paper.  We represent a simple 
client RPC request in NFS Versions 2 and 3 by: 

→ LOOKUP 

We represent a simple server RPC response by: 

← LOOKUP OK 

We represent a COMPOUND client RPC request 
in NFS Version 4, which contains one or more 
operations, by: 

⇒ PUTROOTFH 
LOOKUP 
GETFH 

We represent a COMPOUND server RPC 
response in NFS Version 4, which contains one or 
more replies to previous operations, by: 

⇐ PUTROOTFH OK 
LOOKUP OK 
GETFH OK 

Note the direction of the arrows in each 
example. 

We represent side effects of operations in NFS 
Version 4 in the following way: 

⇐ PUTROOTFH OK ↓CURFH 

to suggest storing the current state of evaluation of 
the COMPOUND procedure. 

The following example illustrates not only the 
use of the COMPOUND procedure, but also the 
elimination of the Mount protocol and portmapper 
through the use of a well-known port (2049). 
Consider the traffic generated over the network by 
the following simple commands on a Solaris 
(UNIX) system: 

mount bayonne:/export/vol0 /mnt 
dd if=/mnt/home/data bs=32k count=1      
            of=/dev/null 

to mount a remote file system and read the first 
32KB of the file. 

Using NFS Version 3, the following sequence 
results: 

→ PORTMAP C GETPORT (MOUNT)  
← PORTMAP R GETPORT 
→ MOUNT C Null 
← MOUNT R Null 
→ MOUNT C Mount /export/vol0 
← MOUNT R Mount OK 
→ PORTMAP C GETPORT (NFS) 
← PORTMAP R GETPORT port=2049 
→ NULL 
← NULL 
→ FSINFO FH=0222 
← FSINFO OK 
→ GETATTR FH=0222 
← GETATTR OK 
→ LOOKUP FH=0222 home 
← LOOKUP OK FH=ED4B 
→ LOOKUP FH=ED4B data 
← LOOKUP OK FH=0223 
→ ACCESS FH=0223(read) 
← ACCESS OK (read) 
→ READ FH=0223 at 0 for 32768 
← READ OK (32768 bytes) 

The sequence above contains the simplified output 
from an actual network trace. Each of the 11 pairs 
of request and response transactions represents a 
network round trip. 

The following traffic would result in an NFS 
Version 4 network: 

⇒ PUTROOTFH 
LOOKUP “export/vol0” 
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GETFH 
GETATTR 

⇐ PUTROOTFH OK ↓CURFH 
LOOKUP OK ↓CURFH 
GETFH OK 
GETATTR OK 

⇒ PUTFH 
OPEN “home/data” 
READ at 0 for 32768 

⇐ PUTFH OK ↓CURFH 
OPEN OK ↓CURFH 
READ OK (32768 bytes) 

Although an implicit “mount” occurred, the 
SECINFO is not needed.  The SECINFO operation 
is only needed when the client attempts access 
with the wrong security flavor and a 
NFS4ERR_WRONGSEC error is returned. 

In the above example, the number of round trip 
requests for the same application in NFS Version 4 
compared to prior versions is reduced from 11 to 
two request and response transactions. 

A client can aggressively use the COMPOUND 
procedure to pre-load caches on initial reference.  
Callaghan prototyped a super LOOKUP in the Java 
client that emitted the following sequence on 
initial access: 

⇒ PUTFH 
LOOKUP “image” 
GETFH 
GETATTR 
ACCESS 
READ at 0 for 32768 

A client may be restricted through its file 
system architecture in the generation of complex 
sequences. 

4.2.  Properties of the COMPOUND 
procedure 

The set of operations in a COMPOUND procedure is 
not atomic.  That is, no assumptions can be made 
as to whether conflicting operations occurred to 
file system objects referenced in a COMPOUND 
procedure between successive operations. 

Error handling is simple on the server.  If an 
operation fails in a COMPOUND procedure, 
evaluation halts and the remaining operations are 
not processed.  Replies are returned to the client up 
to and including the error reply for the failed 
operation. 

Most operations require a filehandle and may 
produce a filehandle as a result.  In NFS Version 4, 
however, most operations do not explicitly have a 

filehandle as an argument or result.  Instead, the 
server maintains a single filehandle, the current 
filehandle, as the argument for those operations.  
To initially load the current filehandle the 
operations PUTFH, PUTROOTFH and PUTPUBFH are 
used.  The SAVEFH operation stores an additional 
filehandle for use by the LINK and RENAME 
operations (which require two filehandles for the 
source and target directories).  RESTOREFH 
retrieves the saved filehandle. 

5. Multi-component LOOKUP 

The multi-component LOOKUP allows a client to 
resolve a full path name in one operation.  The 
client can detect mount point crossing by 
inspecting the fsid of the directory containing the 
object to be resolved and the fsid of the resolved 
object. A UNIX client that detects a mount point 
crossing can explicitly mount the separate file 
systems for reporting space allocation information 
to the user.  A Java client doesn’t care. 

A client can enter partial information for 
intermediate nodes, filling in details with 
additional operations to the server when 
referenced.  

Consider the following example.  The 
command: 

ls /export/home/beepy 

can result in the following initial sequence of 
operations: 

⇒ PUTROOTFH 
LOOKUP “export” “home” “beepy” 
GETFH 
GETATTR 

NFS Version 4 requires that symbolic links be 
resolved relative to the client’s name space.  If 
beepy is a symbolic link, the LOOKUP will fail 
with an NFS4ERR_NOTDIR error: 

⇐ PUTROOTFH OK ↓CURFH 
LOOKUP FAILED 

The client must then resolve the pathname 
component by component – still doable in a single 
COMPOUND procedure.  An equivalent sequence – 
still in a single COMPOUND request is: 

⇒ PUTROOTFH 
LOOKUP “export”  
GETFH 
GETATTR 
LOOKUP “home” 
GETFH 
GETATTR  
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LOOKUP “beepy” 
GETFH 
GETATTR 

The benefit of this sequence, besides loading 
the client attribute cache for interior directory 
nodes, is that the client receives a partial result 
from which to proceed in final pathname 
resolution: 

⇐ PUTROOTFH OK ↓CURFH 
LOOKUP OK ↓CURFH 
GETFH OK 
GETATTR OK 
LOOKUP OK ↓CURFH 
GETFH 
GETATTR OK 
LOOKUP FAILED 

This optimization would require more 
sophisticated error recovery on the client. 

6. Important data structures 

The following data structures are fundamental 
building blocks of NFS Version 4.  

6.1.  Filehandles 

A filehandle, as in previous versions of NFS, is a 
per server unique identifier for a file system object 
that is opaque to the client.  As in previous 
versions of NFS, filehandles that are equal refer to 
the same file system object.  But no assumptions 
can be made by the client if the filehandles differ.  
In prior versions of NFS, procedures returned a 
filehandle explicitly in the results structure.  In 
NFS Version 4, operations set an object called the 
current filehandle as a side effect, for use by 
subsequent operations in a single COMPOUND 
procedure.  A client uses the GETFH operation to 
fetch the current filehandle. 

There are two special filehandles: the root and 
the public filehandles.  These filehandles are 
assigned to the current filehandle with the 
PUTROOTFH and PUTPUBFH operations.  A client 
uses PUTROOTFH to gain initial access to the 
filehandle of the common root of all exported file 
systems on the server, as in the following 
sequence: 

⇒ PUTROOTFH 
LOOKUP “export” “home” 
GETATTR 

⇐ PUTROOTFH OK ↓CURFH 
LOOKUP OK ↓CURFH 
GETATTR OK 

The public filehandle identifies the portion of 
the server name space used with WebNFS as 
described in [RFC2054, RFC2055]. Unlike the 
root filehandle, the public filehandle may be bound 
to an arbitrary file system object.  It may be that 
the root and public filehandles are the same. 

6.1.1. Persistent vs. volatile filehandles 

In NFS Versions 2 and 3, filehandles returned by 
the server were persistent.  The client could count 
on the filehandle always referring to same file. The 
server would typically generate an opaque 
persistent filehandle by including a unique inode 
number, the inode's generation count, and device 
number (fsid) of the disk partition that the 
filehandle's object was allocated on.  If the 
underlying file object was deleted and replaced 
with a file object of the same name, the change in 
generation count maintained by the server would 
result in a new filehandle being generated – and 
invalidating any existing filehandles held by 
clients. When the server received a request from 
the client that included a filehandle, it was 
straightforward to resolve the underlying file 
object from the device number and inode number.   

This model worked well for most UNIX-based 
servers, but did not work for non-UNIX systems 
that relied solely on a file's pathname for 
identification, or for any local file system that did 
not have a persistent equivalent to a compact 
inode number (for example, the High Sierra file 
system for CD-ROMs).   

NFS Version 4 introduces the concept of 
volatile filehandles.  For volatile filehandles, a 
client must cache the mapping between path name 
and file handle, and regenerate the (possibly 
different) filehandle upon filehandle expiration. 
When a filehandle expires, the client gets an 
NFS4ERR_FHEXPIRED error on the next access 
and must flush any cached information that refers 
to that filehandle.   

The intent is that volatile filehandles expire 
only upon certain events, such as: 

• when an open file is closed 
• when the file system the filehandle belongs to 

is migrated  
• when a client renames a file in some file 

systems (as is the case with Linux NFS Version 
2 and 3 servers today) 

The weakest form of volatile filehandles allows 
expiration at any time. This can be risky for a 
client, such as when a second client removes a file, 
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and creates a new one with the same name.  A 
client that has the original file open would 
regenerate the volatile file handle and then access 
the new (unexpected) data resulting in corruption. 
Volatile file handles this weak are best reserved for 
isolated scenarios where a user knows they alone 
are accessing the file system or the file system is 
read only. 

6.2.  Client ID 

A client first contacts the server using the 
SETCLIENTID operation, in which it presents an 
opaque structure identifying itself to the server, 
together with a verifier. The opaque structure 
uniquely identifies a particular client.  A verifier is 
a unique, non-repeating 64-bit object generated by 
the client that allows a server to detect client 
reboots.  On receipt of the client’s identifying data, 
the server will return a 64-bit clientid. The 
clientid is unique and will not conflict with 
those previously granted, even across server 
reboots. 

The clientid is used in client recovery of 
locking state following a server reboot.  A server 
after a reboot will reject a stale clientid, forcing 
the client to re-establish a clientid and locking 
state.  

 After a client reboot, the client will need to get 
a new clientid to use to identify itself to the 
server.  When it does so, using the same identity 
information and a different verifier, the server will 
note the reboot and free all locks obtained by the 
previous instantiation of the client. 

6.3.  State ID 

A stateid is a unique 64-bit object that defines the 
locking state of a specific file.   

When a client requests a lock, it presents a 
clientid  and a unique-per-client lock owner 
identification to identify the lock owner. A lock 
owner is the thread id process id or other unique 
identifier for the application owning a particular 
lock on a client.  On granting the lock, the server 
returns a unique 64-bit object, the stateid, to be 
used by the client in subsequent operations as a 
shorthand notation to the lock owner information 
now stored on the server.  This not only prevents 
another client from accessing a file in a manner 
that conflicts with the locks that are held, it also 
prevents unwanted replay by a broken router of I/O 
requests with a previous stateid (which can 
corrupt the locking state). A side effect of the 

stateid is that it also provides a positive 
acknowledgement to the server that all locks held 
by the client are still valid, allowing an active 
client to avoid explicit lease refresh. 

7. OPEN and CLOSE 

To make vertue of necessite. 
              Chaucer, The Canterbury Tales 

Apart from the Network Lock Manager, NFS 
Versions 2 and 3 were essentially stateless 
protocols (other than for necessarily persistent file 
objects on the server).  This presented problems in 
implementing the functions of file locking and file 
sharing (with Windows operating system 
semantics) required for correct operation of client 
applications. Further, aggressive client caching 
with well-defined semantics was impossible. 

NFS Version 4 introduces an OPEN operation 
that provides an atomic operation for file lookup, 
creation and share reservation. To provide correct 
share reservation semantics, an NFS Version 4 
client must use the OPEN to obtain the initial 
filehandle for a file.  Windows requires the ability 
to atomically create a regular file with a share 
reservation - the OPEN operation (with a create bit 
set) provides these semantics.  

The CLOSE operation releases the state 
accumulated by an OPEN. 

8. Caching and delegation 

NFS has never implemented distributed cache 
coherence, nor supported concurrent write-sharing 
in the absence of locking, and NFS Version 4 does 
not change that. However, client-side caching is 
essential to good performance. NFS has always 
supported client caching – albeit with restrictions 
and a loss of strict cache coherence. 

NFS Version 4 differs from previous versions 
of NFS by allowing a server to delegate specific 
actions on a file to a client to enable more 
aggressive client caching of data and to allow 
caching of locking state for the first time. A server 
cedes control of file updates and locking state to a 
client for the duration of a lease via a delegation.  

8.1.  Client-side caching 

NFS Version 4 file, attribute, and directory 
caching resembles that in previous versions.  
Attributes and directory information are cached for 
a duration determined by the client.  At the next 
use after the end of a predefined timeout, the client 
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will query the server to see if the file system object 
has changed. 

When opening a regular file, the client 
validates cached data for that file.  The client 
queries the server to determine if the file has 
changed. Using this information, the client 
determines if the data cache for the file should be 
kept or flushed.  When the file is closed, the client 
writes any modified data to the server. This 
technique of close-to-open consistency 
[Pawlowski94] has provided sufficient consistency 
for most applications and users. 

If an application wants strict serialized access 
to file data, share reservations or file locking of 
specific file data ranges should be used. 

Previous versions of NFS avoided the use of 
client-side data caching when record locking was 
in effect.  Version 4 defines rules that allow data 
caching during locking while maintaining cache 
integrity.  COMPOUND operations allow fetching the 
modified time for a file after obtaining a record 
lock, without additional latency, simplifying the 
implementation of these rules. 

8.2.  Open delegation 

In NFS Version 4, when a file is only being 
referenced by a single client, responsibility for 
handling all of the OPEN and CLOSE and locking 
operations may be delegated to the client by the 
server.  This eliminates OPEN and CLOSE requests, 
allows locking requests to be resolved locally, and 
eliminates normal NFS client periodic cache 
consistency checks – reducing over-the-wire traffic 
and associated latency. Since the server on 
granting a delegation guarantees the client that 
there can be no conflicting OPEN operations, the 
cached data is assumed valid.  The server may also 
allow the client to retain modified data on the 
client without flushing at CLOSE time, if it can be 
guaranteed that sufficient space will be reserved on 
the server ensuring that subsequent WRITE 
operations will not fail due to lack of space. 

When many clients share a file, in the absence 
of writing, the server may delegate the handling of 
read-only OPEN operations to multiple clients.  
This allows OPEN and CLOSE operations to be 
avoided.  Since such a delegation will only persist 
in the absence of writers, the client is assured that 
cached data is valid, without periodic consistency 
checks to the server. 

A lease is associated with a delegation.  If the 
lease expires, the delegation will be revoked, just 
as with locks.  

Delegation allows common patterns of limited 
sharing and read-only sharing to be dealt with 
efficiently, avoiding extra latency associated with 
frequent communication with the server. When 
these patterns no longer obtain, the delegation is 
revoked and normal client-side caching logic is 
used. 

8.3.  Client callbacks 

Revocation of delegation requires the client to 
update state on the server to reflect changes made 
by the client as part of the delegation, and then 
return the delegation to the server.  Upon return of 
the delegation, the server will centrally manage 
OPEN and locking operations. 

Revocation is accomplished by making a 
callback.  A callback is an RPC from the server to 
the client to inform it of server actions.  Because 
callbacks may have problems transiting firewalls, 
callbacks are not required for proper operation of 
the protocol.  A server will test whether a client 
can respond to callbacks by making an initial 
CB_NULL request to the client.  If a client fails to 
respond, the server will not delegate authority to 
that client. 

8.4.  Delegations vs. Windows OpLocks 

Delegation has many similarities to Opportunistic 
Locks (OpLocks) used by CIFS [Borr], and was 
inspired by the benefits which that mechanism 
provides.  The differences between them reflect the 
different histories of the two protocols and the 
problems they solve. 

Delegations differ from OpLocks in that a 
delegation is an optimization that is solely up to 
the server while OpLocks are requested by the 
client.  The ability to delegate depends on a 
network configuration that the server can verify, 
plus specific sharing patterns. 

When OpLocks are lost or not available, CIFS 
sends all operations to the server while NFS can 
fall back to its standard modes of (periodically 
checked) client-side caching when delegations are 
unavailable.  This makes delegation less critical a 
feature, but delegation – when possible – provides 
many performance benefits, particularly when 
applications are doing frequent file locking 
operations. 
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Delegations can persist beyond the OPEN 
operation which gave rise to them, like Batch 
OpLocks in Windows, allowing subsequent OPEN 
operations to be cached on the client.  Delegated 
files can be shared by many applications on a 
single client with the proper state for all transferred 
back to the server upon delegation revocation.  

9. Locking 

NFS Version 4 locking is similar to the adjunct 
Network Lock Manager (NLM) protocol used with 
NFS Versions 2 and 3, but it is tightly coupled to 
the NFS protocol to better support different 
operating system semantics and error recovery. 

A major failing of the NLM protocol was the 
detection and recovery of error conditions.  The 
design assumed that the underlying transport was 
reliable and preserved order. With NLM, an 
unreliable network easily resulted in orphan locks 
on the server. In addition, if a client crashed and 
never recovered, locks could be permanently 
abandoned, preventing any other client from ever 
acquiring the lock. 

9.1.  Leases 

The key change in NFS Version 4 locking is the 
introduction of leases for lock management.  

A lease is a time-bounded grant of control of 
the state of a file, through a lock or delegation, 
from the server to the client. During a lease 
interval a server may not grant conflicting control 
to another client.  A lease confers on the client the 
right to assume that a lock granted by the server 
will remain valid for a fixed (server-specified) 
interval and is subject to renewal by the client. The 
client is responsible for contacting the server to 
refresh the lease to maintain the lock.   

The expiration of a lease is considered a failure 
in the communications between the client and the 
server, requiring recovery.  If the lease interval 
expires without a refresh from the client, the server 
assumes the client has failed and may allow other 
clients to acquire the same lock. If the server fails, 
on reboot the server waits a duration equal to a 
lease interval for clients to reclaim the locks that 
they may still hold, before allowing any new lock 
requests. 

Leases or token-based state management exists 
in several distributed file systems [Kazar90, 
Macklem94, Srinivasan].  

Most operating systems demand that a lock is 
irrevocable once acquired by an application. 
Unlike leases used to manage cache consistency 
where leases are kept short to prevent unnecessary 
delays in normal operations, the lock lease 
intervals can be substantially longer, reducing the 
number of lease refreshes required, one of the 
primary drawbacks of a lease-based protocol.   

In addition, the lease protects against a loss of 
the locking state by the client. A client exists in 
two states:  either all the locks held from a given 
server are correct or all are lost. A refresh of any 
lock by the client validates all locks held by the 
client to a particular server.  This reduces the 
number of lease refreshes by the client from one 
per lock each lease interval, to one per client each 
lease interval, eliminating another drawback of a 
lease-based protocol. 

9.2.  Mandatory locking 

Better interoperability with non-Unix operating 
systems is an important goal of NFS Version 4. A 
key feature of the Windows operating systems, and 
available on some Unix operating systems, is 
mandatory locking - the ability to block I/O 
operations by other applications on a file that 
contains a record lock. The NLM protocol 
provided only for advisory locking which allowed 
cooperating applications to synchronize I/O 
operations, but did not block other applications 
from performing I/O operations to the file. To 
handle this additional semantic, the concept of a 
stateid was added to NFS Version 4.   

9.3.  Share reservations 

To provide better interoperability, NFS Version 
4 fully supports share reservations.  A share 
reservation grants a client access to open a file and 
the ability to deny other clients open access to the 
same file. A share reservation is similar to a file or 
record lock, except that its granularity is always on 
an entire file, and its lifetime equals the duration of 
the file open. Normal file and record locks do not 
interact with share reservations - a share 
reservation is distinct from a record lock in that it 
only governs the ability to open a file.   

For example, an application may open a file for 
read access and acquire a share reservation 
denying other subsequent opens that request write 
access. The NLM protocol supported clients that 
use this style of lock to cooperate amongst 
themselves, but it did not enforce it between non-
cooperating clients.  More importantly, a share 
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reservation was not tied into other operations that 
implicitly open a file, such as CREATE. This 
exposes a race condition where one client could 
create a file, and before the second operation to 
acquire a share lock denying other clients access is 
received, another client acquires a conflicting 
reservation. The addition of an explicit OPEN 
operation correctly supports share reservations.  

The OPEN operation takes as parameters the 
traditional desired access of read or write and, in 
addition, allows the application to deny read or 
write access to other applications. The server 
response contains a stateid that is used by the 
server to enforce share reservations.  A 
corresponding CLOSE operation allows a client to 
free the held share reservations. 

9.4.  Sequence IDs 

The most problematic part of network locking is 
dealing with lock requests that arrive out of order 
or are replayed. As an example, a client issues a 
sequence of lock, unlock, and lock requests. If a 
misbehaved router replays a previous unlock 
request other clients may acquire a conflicting lock 
and corrupt data.  The RPC layer's transaction id 
will defend against many of these replay errors, 
but the server duplicate request caches are 
frequently not large enough to handle even modest 
windows of time [Juszczak].  Locking requests by 
an application in virtually all operating systems are 
strictly ordered, defining a well-known state of the 
file. This requires that a server in a distributed file 
system also process the locking requests in the 
required strict order.  

NFS Version 4 adds to every lock and unlock 
operation a monotonically increasing sequence 
number to provide at-most-once semantics. The 
server maintains for each lock owner the last 
sequence number and the response sent. If a 
second request is received with the last sequence 
number, the response is replayed under the 
assumption that the previous response was lost.  If 
an earlier sequence number is received then an 
error is returned as it must be a replay of a 
previously received response. A sequence number 
beyond the next sequence number is also rejected. 

10. Attributes 

The attribute model for NFS Version 4 is different 
from prior versions in providing a mechanism for 
extensibility.  NFS Version 4 defines three types of 
attributes: 

• Mandatory 
• Recommended 
• Named 

Mandatory and recommended attributes are 
defined in terms of a bit vector to allow efficient 
implementation of operations that return or 
manipulate those attributes.  A mask defines those 
attributes that are to be manipulated – with unset 
bits representing attributes to be ignored. 

10.1.  Mandatory attributes 

Mandatory attributes represent the baseline 
attributes that must be supported or emulated by 
every implementation.  Mandatory attributes 
include: 

• Object type 
• Filehandle expiration type 
• Change indicator 
• Size 
• UNIX LINK support 
• UNIX SYMLINK support 
• fsid 
• Lease duration 

10.2.  Recommended attributes 

The recommended attributes include: 

• ACL 
• Archive bit 
• Case insensitive 
• Case preserving 
• Change owner restricted 
• No file name truncation beyond maximum 
• Filehandle 
• File ID 
• Hidden 
• Maximum file size 
• Maximum number of links 
• Maximum filename size 
• Maximum read size 
• Maximum write size 
• MIME type 
• UNIX mode bits 
• Owner string 
• Group string 
• Modify time 
• Create time 
• Access time 
• Space available to user 
• File system free space 
• File system total space 
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• Space used by object 

ACLs are a special recommended attribute and 
are described below in the section on security. 

10.3.  Named attributes 

NFS Version 4 introduces named attributes for the 
first time.  The model for named attributes is 
simple.  Associated with each file system object is 
a hidden directory containing all its named 
attributes.  The data associated with the named 
attributes is an uninterpreted (by NFS) stream of 
bytes.  A client would access named attributes in 
the following way: 

• The OPENATTR operation sets the current 
filehandle to the named file attribute directory 
for the file object 

• READDIR and LOOKUP operations retrieve file 
handles for the various named attributes 
associated with the original file system object. 

Named attributes require support on the server, 
and are a feature of common file systems like 
Windows NTFS. 

11. Security model 

NFS relies on the underlying security model of 
RPC for its security services.  A variety of 
authentication flavors have been defined for use by 
NFS going back to the Diffie-Hellman public key 
authentication scheme defined for use with NFS 
Version 2 [Taylor].  However, no model other than 
the weakly authenticated UNIX permission 
scheme was ever widely adopted, limiting the use 
of NFS in hostile networks (for example, 
universities).  

While NFS Version 3 introduced the ACCESS 
procedure in part to support flexible ACL-based 
access control, no agreement was ever reached on 
a common ACL format to allow heterogeneous 
access control.  

In the area of security, NFS Version 4 
improves over NFS Versions 2 and 3 by: 

• mandating the use of strong RPC security 
flavors that depend on cryptography 

• negotiating the security used via a system that 
is both secure and in-band 

• using character strings instead of integers to 
represent user and group identifiers 

• supporting access control that is compatible 
with UNIX and Windows 

• removing the Mount protocol. 

11.1.  GSS-API framework 

NFS is based on ONCRPC [RFC1831] and 
leverages its security architecture, recently 
bolstered by the addition of a security flavor based 
on the Generic Security Services API (GSS-API), 
called RPCSEC_GSS [RFC2203]. RPCSEC_GSS 
is a security flavor allocated under the same flavor 
number space as the commonly used AUTH_SYS 
flavor; AUTH_SYS is flavor number 1, 
RPCSEC_GSS is flavor number 6. The flavors 
between 1 and 6 represent efforts such as [Taylor] 
to improve RPC security that became obsolete due 
to advancements in attacks based on brute force 
[EFF] and better cryptanalysis [LaMacchia].  

RPCSEC_GSS differs from AUTH_SYS and 
other traditional flavors in two ways: 

• First, RPCSEC_GSS does more than 
authentication. It is capable, albeit at 
considerable expense of CPU execution time 
[Eisler96], of performing integrity checksums 
and encryption of the entire body of the RPC 
request and response. Hence, RPCSEC_GSS is 
a security flavor, and not just an authentication 
flavor. 

• Second, because RPCSEC_GSS simply 
encapsulates the GSS-API messaging tokens – 
it merely acts as a transport for mechanism-
specific tokens for security flavors like 
Kerberos.  Adding new security mechanisms 
(as long as they conform to GSS-API) does not 
require re-writing significant portions of NFS 
or any other ONC RPC-based application. 

11.2.  Mandated strong security 

All versions of NFS are capable of using 
RPCSEC_GSS. The difference is that while an 
implementation can claim conformance to NFS 
Versions 2 and 3 without implementing support for 
RPCSEC_GSS, a conforming NFS Version 4 
implementation must implement RPCSEC_GSS. 
Furthermore, conforming NFS Version 4 
implementations must implement security based 
on Kerberos Version 5 (in this paper, simply 
Kerberos) [RFC1510] and LIPKEY [Eisler00], 
each of which are GSS-API conforming security 
mechanisms.  

11.2.1. Kerberos versus LIPKEY 

Kerberos divides user communities into realms. 
Each realm has an administrator responsible for 
maintaining a database of principals (users).  Each 
realm has one master Key Distribution Center 
(KDC), and one or more slave KDCs that give 
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users tickets to access services on specific hosts in 
a realm.  Users in one realm can access services in 
another realm, but it requires the cooperation of 
the administrators in each realm to develop trust 
relationships and to exchange per-realm keys. 
Hierarchical organization and authentication of 
realms can reduce the number of inter-realm 
relationships.   

Kerberos has been used on other distributed 
file systems, such as the Andrew File System 
[Howard], the Open Software Foundation's 
Distributed File System [Kazar], NFS Version 2 
and 3 [RFC2623], and most recently, Microsoft's 
CIFS (Windows 2000) [Microsoft00].  Kerberos is 
an excellent choice for enterprises and work 
groups operating within an Intranet, since it 
provides centralized control, as well as single sign 
on to the network.   

But NFS Version 4 is also designed to work 
outside of intranets on the global Internet. 
Kerberos does not work well on the Internet.  The 
user would need the cooperation of his local 
system administrator to negotiate a trust 
relationship with the administrator of the remote 
realm.   

The Low Infrastructure Public Key (LIPKEY) 
system provides an SSL-like model and equivalent 
security for use on the Internet. LIPKEY is a GSS-
API security mechanism using a symmetric key 
cipher and server-side public key certificates.    

The LIPKEY user experience is similar to that 
of HTTP over the Secure Sockets Layer (SSL).   A 
user is prompted for a user name and password.  
These are encrypted with a 128-but symmetric 
session key.  The session key is encrypted with the 
server’s public key and all are sent to the server.  
The client authenticates the server by comparing 
the latter’s certificate with a list of trusted 
Certification Authorities. 

11.3.  Why not SSL? 

NFS Version 4 does not use SSL [SSL]. The 
primary issue with SSL is that it does not work 
over connectionless protocols like UDP, whereas 
NFS does.  The second problem is that as 
mentioned previously, RPC has its own security 
architecture – it is unclear how to cleanly merge 
SSL and RPC security. RPCSEC_GSS provides 
equivalent security, yet is compatible with flavors 
like AUTH_SYS. 

11.4.  Kerberos in Windows 2000 vs. 
UNIX 

As noted in [Ts'o], Windows 2000's Kerberos has 
some incompatibilities with most other Kerberos 
implementations.  Windows 2000 uses the pre-
authentication field in Kerberos messages to 
encode a proprietary representation of the 
privileged access groups (PAGs) that a user 
belongs to. This way, when a Kerberized client 
talks to a Kerberized-server, the server knows 
immediately what groups the user belongs to. This 
is both an efficient and non-interoperable scheme, 
which is exacerbated by no published 
documentation on the format of the PAG list, and 
what the PAG entries mean. 

Most Kerberized servers outside of Windows 
2000 would do something different. For example, 
an NFS server in the UNIX space would map the 
principal name to the UNIX user identifier, and the 
UNIX user identifier to the list of groups 
associated with the user. It is no less efficient to do 
it this way, because it is possible to compute the 
mappings upon user addition to the directory 
services domain that the NFS server lives in. This 
approach also has the virtue of being completely 
inter-operable with non-UNIX clients.   

The effect of PAGs on NFS is that if a 
Windows 2000-based NFS Version 4 client or 
server uses PAGs, then it will not interoperate with 
a non-Windows 2000-based server or client. 
Otherwise, there are no issues with the Windows 
2000 and non-Windows 2000 nodes on the 
network sharing the same Kerberos key space. 

11.5.  Negotiating security 

NFS Version 2 had no way to negotiate security, 
which meant that if an NFS server exported a file 
system with something other than AUTH_SYS, 
there was no way for it to tell the client. Unless the 
client mounted the file system with an explicit 
mount option for different security, the mount 
attempt would fail.   

NFS Version 3 enhanced the Mount protocol to 
include a list of security flavors that the client 
could use to mount the file system. The problem 
with this approach is that the Mount protocol itself 
was not secure. While in theory, the Mount 
protocol could use RPCSEC_GSS, in practice, 
Mount servers were not required to support 
RPCSEC_GSS.   

NFS Version 4 deals with negotiation of 
security by including a new SECINFO operation 
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that allows a client to ask what security the server 
requires for a given file object. The SECINFO 
operation's arguments and results are secured using 
one of the mandatory security flavors. The results 
of a SECINFO call define the RPC security flavors 
that should be used, and for each flavor any 
required additional information. For example, if 
SECINFO specifies that AUTH_SYS can be used, 
no additional information is needed. However, if 
SECINFO specifies to use RPCSEC_GSS, because 
RPCSEC_GSS is merely a security mechanism 
switch more information is needed.  The client and 
server will then negotiate the Object Identifier of 
the GSS-API mechanism, what quality of 
protection to use, and whether to use 
authentication, integrity (checksummed arguments 
and results), or privacy (encrypted arguments and 
results – full user data encryption). 

11.6.  String identifiers  

NFS Versions 2 and 3 represented users and 
groups via 32 bit integers.  The NFS protocol uses 
user and group identifiers in the results of a get 
attribute (GETATTR) operation and in the 
arguments of a set attribute (SETATTR) operation. 
Using integers to represent users and groups 
requires that every client and server that might 
connect to each other to agree on user and group 
assignments. Not only is this impractical across the 
Internet, but problematic for some large 
enterprises. Some feel that a secondary issue is that 
32 bits to represent users is not large enough.   

NFS Version 4 represents users and groups in 
the form: 

 user@domain 

or 

 group@domain 

where domain represents a registered DNS 
domain, or a sub-domain of a registered domain. 
By leveraging the global domain name registry and 
delegating user and group identifier control, NFS 
Version 4 does not require IANA to develop yet 
another global registry to guarantee uniqueness.   

One issue with using string names, instead of 
integers, is that UNIX systems like Solaris will 
still be using integers in the underlying file 
systems stored on disk. This requires mapping 
string names to integers and back.  Since NFS 
clients and servers have done something similar 
with security flavors like RPCSEC_GSS and 
AUTH_DH [Taylor] that use string names for 

principals and not integers, we did not see a risk 
from removing integer based identifiers from the 
protocol.   

11.6.1. UUIDs 

We did consider Universal User Identifiers 
(UUIDs) instead of strings. However, UUIDs still 
have the translation issue, since they are 128 bits 
long versus 32 bits for UNIX identifiers.  
Furthermore, in situations where a client receives a 
GETATTR result with an untranslatable identifier, it 
was felt that a string like ted@eisler.com would 
be more useful than a string of 128 bits. We 
anticipate that UNIX implementers might consider 
adding a stat(2) system call variant that returns 
the file system's native string representations if 
available.   

11.7.  Access Control Lists  

An Access Control List, or ACL, is simply a list 
that describes which users and groups get access to 
a file with what type of access (for example, read 
versus write). NFS Versions 2 and 3 do not have 
support for an ACL attribute, although there are 
several proprietary protocols for manipulating 
ACLs over NFS based on the POSIX Draft ACL 
specification.  Such ACL support never saw wide 
use, perhaps due to the proprietary nature of the 
protocols and that the POSIX specification was 
never standardized. 

NFS Version 4 includes ACL support based on 
the Windows NT model and not the POSIX model.  
The reasons are that compared to the POSIX 
model, the NT model is both richer, and widely 
deployed.   

The richness of the NT model is seen in that an 
Access Control Entry (ACE) within an ACL can 
be one of four types: ALLOW, DENY, AUDIT, or 
ALARM. ALLOW and DENY simply means the 
ACE allows or denies the specified access to the 
entity attempting access. AUDIT means if the 
entity in the ACE attempts the specified access, 
log the attempt. ALARM generates a system 
dependent alarm if the entity in the ACE attempts 
the specified access.  The POSIX model does not 
support AUDIT and ALARM. 

One major difference between the NT and 
POSIX ACL models prevents NT from being a 
strict superset of the POSIX.  In the NT model, the 
first ACE in the ACL that denies or allows access 
corresponding to the principal, or the principal's 
group making the request, determines if access is 
allowed.  In the POSIX model, there are two kinds 
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of ACEs: user entries and group entries.  In the 
POSIX model, the user identifier is checked 
against the user entries first, and if the access is not 
unambiguously granted or denied, then the user's 
group identifiers are each checked against the 
group entries in the ACL. We feel that in practice 
this subtlety is unimportant. 

There do exist systems today with POSIX 
ACLS that are incompatible with the ACLS 
defined for NFS Version 4. An NFS 
Version 4 server on such a system could continue 
to compute a user's access to a file with an 
incompatible POSIX ACL per the POSIX draft.  
As long as the ACL on the file does not change, 
there is no issue. When a client changes the ACL 
via the SETATTR operation, the server can 
replace the incompatible POSIX ACL with an NFS 
Version 4 compatible ACL as long as it assures 
that: 

• the resulting ACL is not more permissive than 
the pre-existing POSIX ACL 

• the resulting ACL is not more permissive than 
what the client intended. 

11.8.  Removing the Mount protocol  

Unlike NFS Versions 2 and 3, NFS Version 4 has 
no Mount protocol.  As a byproduct, this closes a 
security hole. Suppose there exists an exported 
directory called  

/export/alice/safe/A.  

Suppose the permissions on  

/export/alice/safe  

do not allow anyone but safe's owner, Alice, 
access, but the permissions on 
/export/alice/safe/A are wide open. An NFS 
Version 2 or 3 client would normally be allowed to 
get a filehandle for /export/alice/safe/A and 
mount it, thus allowing a second party wrongful 
access.  

Since NFS Version 4 has no way to distinguish 
mount attempts from other accesses, any client but 
Alice that attempts to get a filehandle for 
/export/alice/safe/A will be denied.  

12. Migration and replication 

To improve availability, NFS Version 4 has added 
features to support file system migration and 
replication. 

A file system can migrate to a new server and 
the clients notified of the change by means of a 

special error code.  A client is informed of the new 
location by means of the fs_locations file 
attribute.  It may then access the file system on the 
new server transparently to applications running on 
the client. 

The fs_locations attribute may also 
designate alternate locations for a (read-only) file 
system.  If a client finds a file system unresponsive 
or performing poorly, it may choose to access the 
same data from another location.  If a server 
implementation is concerned about the persistence 
of filehandles in the face of migration, it can vend 
volatile filehandles.  The client will re-LOOKUP 
open files using saved pathname components on 
switching to a new server. 

13. Minor versioning 

This is the second major revision of NFS.  In the 
past, NFS has been extended by overloading the 
semantics of existing procedures – without 
recourse to a formal protocol revision. 
Unfortunately, this sometimes hurt 
interoperability.  One goal of the NFS Version 4 
effort was to provide a framework for minor 
versioning of the protocol to facilitate rapid, 
simple evolution.  

Minor versioning is left mostly undefined in 
the base NFS Version 4 protocol.  A Reserved 
Operation 2 exists to provide minor version 
negotiation in a future minor revision.  The 
COMPOUND arguments also include a minor version 
field (currently 0). Via the reserved operation, a 
client will query the server for minor versions 
supported – negotiating capabilities in a similar 
fashion to today’s version binding in RPC.  Minor 
version negotiation is client driven.  A minor 
version 0 server (the current protocol definition) 
identifies itself as only supporting version 0 by 
returning NFS4ERR_NOTSUPP – operation not 
supported - on attempts to invoke Reserved 
Operation 2. 

The base specification (minor version 0) has 
some recommended rules for future work groups 
on managing the creation of a minor version.  For 
example, allowing extension through the addition 
of additional attributes, but avoiding deletion of 
attributes existing in previous minor versions.  

14. Modifications for use on the Internet 

In the area of suitability for the Internet, NFS 
Version 4 improves over NFS Versions 2 and 3 by: 

• requiring TCP as a transport 
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• defining COMPOUND operation to reduce round-
trip latency 

• defining a global user identifier name space 
• mandating strong security based on a public 

key scheme 
• enabling operation through firewalls 

14.1.  TCP is mandatory 

The NFS Version 4 specification requires that any 
transport used provide congestion control. The 
easiest way to do this is via TCP. By using TCP, 
NFS Version 4 clients and servers will be able to 
adapt to known frequent spikes in unreliability on 
the Internet [Martin]. 

14.2.  Reduced round trip latency 

As illustrated in the examples of section 4.1, the 
COMPOUND procedure enables clients to pack more 
operations in a single request, thus significantly 
reducing round trip latency. 

14.3.  Global user name space 

As described in 11.6, user and group identifiers are 
string names allocated relative to DNS domain 
names. Because the identifiers are completely 
generic, with no bias toward UNIX, NT, or any 
other operating system, the consumer need not be 
impacted if the service provider changes platforms, 
nor is the service provider impacted if the 
consumer changes platforms. 

14.4.  Mandatory security 

As described in 11.2., NFS Version 4 clients and 
servers must support LIPKEY, a public key 
scheme that has similar properties to SSL. Both 
SSL and LIPKEY share properties that make them 
suitable for the Internet, namely that customers and 
vendors can get together without prior 
establishment of complex trust relationships. 

The e-commerce market place has proven to be 
quite dynamic. If another security technology 
replaces the simple public key approaches of SSL 
and LIPKEY, the flexibility of GSS-API will ease 
the introduction of this new security mechanism. 

14.5.  Firewall Friendly 

To access an NFS server, an NFS Version 2 or 3 
client must contact the server's portmapper to find 
the port of the Mount server. It contacts the Mount 
server to get an initial file handle. Then it contacts 

the portmapper to get the port of the NFS server. 
Finally, the client can access the NFS server. 

This creates problems for using NFS through 
firewalls, because firewalls typically filter traffic 
based on well known port numbers. If the client is 
inside a firewalled network, and the server is 
outside the network, the firewall needs to know 
what ports the portmapper, Mount server, and NFS 
server are listening on.  The Mount server can 
listen on any port, so telling the firewall what port 
to permit is not practical. While the NFS server 
usually listens on port 2049, sometimes it does not. 
While the portmapper always listens on the same 
port (111), many firewall administrators, out of 
excessive caution, block requests to port 111, from 
inside the firewalled network to servers outside the 
network. 

NFS Versions 2 and 3 are not practical to use 
through firewalls. 

NFS Version 4 solves the issue by eliminating 
the Mount protocol, and mandating that the server 
will listen on port 2049. This means that NFS 
Version 4 clients do not need to contact the 
portmapper, and do not need to access services on 
floating ports, making firewall configuration as 
simple as configuration for HTTP. 

15. A common Internet file system 

One ring to rule them all, 
                  Tolkien 

NFS Version 4 lends itself to several applications 
on the Internet.  

15.1.  An open download protocol 

The Internet is rapidly becoming the primary 
means for distributing large files containing 
installable software, documents, and multi-media.  
Most downloads use the File Transfer Protocol 
(FTP), or HTTP. For slow links, large file 
downloads have an almost certain chance of 
aborting, with no recourse for the user but to start 
over again. While NFS is designed to be a file 
access protocol, because NFS allows the clients to 
read files from arbitrary offsets, it is a superior file 
transfer protocol.  If the TCP connection breaks 
due to timeout or other reasons, the client can 
simply re-connect and continue (transparently to 
the user).  With the use of LIPKEY, the client and 
server can protect the transfers from third party 
eavesdropping or tampering.   
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15.2.  Consumer backup and restore 

The cost of disk space on personal computers 
seems to be approaching US$1 (or 1.04€ or ¥107) 
per gigabyte.  With the capability to store more 
data, the odds of a user losing data are increasing.  
Outside the home, data management policies are in 
place to ensure that valuable data is not lost due to 
a failure in the storage system.  These policies 
include backup of data to tertiary storage, and the 
use of redundant arrays of disks or file servers.  
Within the home, it is impractical to expect the 
average consumer to implement formal data 
management. While we are seeing the emergence 
of low-end appliances for storing data redundantly, 
that these appliances are co-located with the user’s 
primary data violates the principle of having off-
site backups. 

Several web sites today provide file backup 
and restore services.  By definition, these web sites 
are off site. As high bandwidth links like DSL and 
cable modem become available to users, it 
becomes increasingly practical to backup larger 
amounts of data, obviating the need for on-site 
backups at home. 

So far, these services are based on HTTP and 
FTP, which suffer from the same problems as file 
download for large file transfer. Again, NFS 
Version 4, secured via LIPKEY, offers a superior 
approach, providing strong authentication and 
privacy. 

15.3.  The Internet disk 

Combining high-bandwidth persistent connections 
like DSL with NFS Version 4 delegation and 
sophisticated caching allows one to envision a time 
when users will prefer that the master copies of 
their data always exist on the service provider - 
who can better deal with the complexity of reliable 
data management. 

For example, in the morning, before work, the 
user can access his data, which results in a 
transparent download of a subset of it to local 
storage, and manipulate it locally. Before going to 
work, the user “saves” it.  When the user arrives at 
work, he will be able to access the same version of 
the data he was working on at home, because 
either his NFS Version 4 capable desktop at home 
has synchronized its dirty cache with the server, or 
the server will revoke the delegation to gain access 
to the latest data. The user at the office will be 
blocked from accessing his data until the server 
has a consistent copy. 

16. Future Work 

[Pawlowski] described several follow-on tasks for 
NFS Version 3.  Of those tasks, NFS Version 4 
addresses strong security, while it does not provide 
support for concurrent write sharing (though we 
introduce delegations for improved caching 
performance), nor does it support disconnected 
operation. Changes to the export model and 
allowing mount point crossing when browsing 
from a single server root partially address 
consistent name space construction.  

Curiously missing from the analysis in 1994 is 
recognition of the growing importance of support 
for file sharing on the Internet – which the design 
NFS Version 4 strongly reflects.   

Given that track record of predictions, let’s 
take a stab at presenting expected future work in 
the NFS Version 4 space. 

16.1.  IETF standardization 

At the time of this writing, the working draft of the 
NFS Version 4 protocol specification has been 
submitted to the Internet Engineering Steering 
Group for consideration as a Proposed Standard – 
the first formal step towards the goal of achieving 
Internet Standard acceptance [RFC2026].  
Specifications intended to become Internet 
Standards evolve through a set of maturity levels 
known as the "standards track".  These maturity 
levels - Proposed Standard, Draft Standard, and 
Standard - reflect movement through the IETF 
standards process. While achieving Proposed 
Standard designation does not require 
implementation experience, we chose to prototype 
the specification to prove out concepts.  

The construction of two independent, 
interoperable conforming implementations based 
on the specification are required to achieve Draft 
Standard status. Some changes may occur between 
Proposed Standard and Draft Standard status, but 
these are not expected. A Draft Standard is 
normally considered to represent the final 
specification – any changes made to the protocol  
beyond this reflect specific (otherwise insoluble) 
problems.  Internet Standard achievement follows 
widespread experience with the Draft Standard and 
its implementations. 

16.2.  Minor versioning 

Details of minor version negotiation, and change 
coordination for minor versioning, remain for 
future versions of the working group.  Reserved 
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operation 2 provides the ability to evolve NFS 
Version 4.  Some suggested rules for future efforts 
in minor versioning appear in the draft 
specification. 

16.3.  Performance 

The reduction in network latency with the use of 
the COMPOUND procedure comes at the cost of 
additional complexity in operation coding and 
decoding on the client, and increased complexity 
in handling error returns.  More experience is 
needed in this area to understand the costs. 

The attribute model and the use of a bit mask to 
describe attributes of interest to be fetched by the 
client generated much discussion.  The trade-off of 
possibly reduced work on the server in loading 
only those attributes of interest is pitted against the 
increased decode complexity (and branching) in 
the implementation to handle a variable attribute 
return.  The costs of the attribute model will be 
explored during further implementation. 

16.4.  Migration and replication 

A server in NFS Version 4 can inform a client 
when multiple copies of a file system exist, or 
when a file system has moved.  The client uses this 
information to adapt to changing network 
conditions and file system relocation. This 
provides a framework for migration and 
replication. 

NFS Version 4 does not address server-to-
server file system migration protocols or the issues 
of maintaining replica consistency and migration 
atomicity.  It remains for future working groups to 
define.  Until then, vendor-specific solutions may 
arise.  

16.5.  Single system image or name space 

[Kazar, Howard, Microsoft99] describe approaches 
to providing a shared consistent name space that 
hides server details of data location from users.  
An NFS Version 4 server hides some details of 
data location by presenting a per-server single 
image of all exported file systems to a client.  
There is interest in providing a general scheme for 
a global, server independent name space within the 
context of NFS Version 4. 

16.6.  High performance locking 

NFS Version 4 maintains lock ordering and 
supports mandatory blocking locks, but these 
features are based on a polling model.  Fast lock 

cycling is critical to application locking 
performance, and this may be a weakness in our 
model and an area for future redesign. 

16.7.  SFS benchmark 

The SPEC organization’s SFS benchmark is a 
standard for measuring the performance of NFS 
implementations [Robinson].  An NFS Version 4 
version of the benchmark remains to be done. 

17. Resources for developers 

The primary site for NFS Version 4 information is: 

 http://www.nfsv4.org 

Pointers to relevant sections of the Internet 
Engineering Task Force site: 

 http://www.ietf.org 

can be found there. 

The CITI group at the University of Michigan is 
developing an open source reference 
implementation, and their work can be accessed at: 

 http://www.citi.umich.edu/projects/nfsv4/ 
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