
The NFS Version 4 Protocol
Brian Pawlowski, Spencer Shepler, Carl Beame, Brent Callaghan, Michael Eisler,

David Noveck, David Robinson, Robert Thurlow

Abstract

The Network File System (NFS) Version 4 is a
new distributed file system similar to previous
versions of NFS in its straightforward design,
simplified error recovery, and independence of
transport protocols and operating systems for file
access in a heterogeneous network. Unlike earlier
versions of NFS, the new protocol integrates file
locking, strong security, operation coalescing, and
delegation capabilities to enhance client
performance for narrow data sharing applications
on high-bandwidth networks. Locking and
delegation make NFS stateful, but simplicity of
design is retained through well-defined recovery
semantics in the face of client and server failures
and network partitions.

This paper describes the new features of the
protocol, focusing on the security enhancements,
integrated locking support, changes to fully
support Windows file sharing semantics, support
for high performance data sharing, and the design
points that enhance performance on the Internet.
We describe applications of NFS Version 4.
Finally, we describe areas for future work.

1. Background

The Network File System, or NFS, was developed
by Sun Microsystems to provide distributed
transparent file access in a heterogeneous network.
In the summer of 1998, Sun Microsystems ceded
change control of NFS to the Internet Engineering
Task Force [RFC2339]. IETF assumed the
responsibility to create a new version of NFS for
use on the Internet.

Prior to the formation of the IETF NFS Version
4 working group, Sun Microsystems deployed
portions of the technology leading up to NFS
Version 4, notably WebNFS [RFC2054,
RFC2055] and strong authentication with Kerberos
[MIT] within a GSS-API framework [RFC2203].
In August 1998 Sun submitted a strawman NFS
Version 4 protocol specification to the newly
formed working group. Following discussions in
the working group, and contributions by many
members, prototype implementations of the
protocol began to prove out the concepts. Initial
implementation testing of prototypes (including a
Java prototype) based on the working drafts
occurred in October 1999 to verify the design. The
specification was submitted to the Internet

Engineering Steering Group for consideration as a
Proposed Standard in February 2000. Further
implementation work and interoperability testing
occurred early March 2000.

1.1. Requirements

As part of the IETF process, Sun Microsystems
submitted an initial draft of a requirements
document for NFS Version 4 to the newly formed
working group. After wide review and some
minor revisions [RFC2624], the requirements for
NFS Version 4 were specified to be:

• Improved access and good performance on the
Internet

• Strong security, with security negotiation built
into the protocol

• Enhanced cross-platform interoperability
• Extensibility of the protocol

Additionally, we sought improvements in
locking and performance for narrow data sharing
applications.

2. The NFS Version 4 protocol

 Old Marley was as dead as a door-nail.
 Dickens, A Christmas Carol

The NFS Version 4 protocol is stateful.

NFS is a distributed file system designed to be
operating system independent. It achieves this by
being relatively simple in design and not relying
too heavily on any particular file system model.
NFS is built on top of the ONC Remote Procedure
Protocol [RFC1831]. A Remote Procedure Call
(RPC or procedure) defines a procedural model for
distributed applications, and is the underlying
architecture of all NFS implementations. The
External Data Representation (XDR) [RFC1832]
enables heterogeneous operation by defining a
canonical data encoding over the wire. A server in
the RPC architecture provides a service by
supporting a set of remote procedures in a well-
defined distributed application. A client is a user
of those services.

The first major structural change to NFS
compared to prior versions is the elimination of
ancillary protocols. In NFS Versions 2 and 3, the
Mount protocol was used to obtain the initial
filehandle, while file locking was supported via the
Network Lock Manager protocol. NFS Version 4
is a single protocol that uses a well-defined port,

2

which, coupled to the use of TCP, allows NFS to
easily transit firewalls to enable support for the
Internet. As in WebNFS, the use of initialized
filehandles obviates the need for a separate Mount
protocol [RFC1813]. Locking has been fully
integrated into the protocol – which was also
required to enable mandatory locking. The lease-
based locking support adds significant state (and
concomitant error recovery complexity) to the NFS
Version 4 protocol.

Another structural difference between NFS
Version 4 and its predecessors is the introduction
of a COMPOUND RPC procedure that allows the
client to group traditional file operations into a
single request to send to the server. In NFS
Versions 2 and 3, all actions were RPC procedures.
NFS Version 4 is no longer a “simple” RPC-based
distributed application. In NFS Version 4, work is
accomplished via operations. An operation is a file
system action that forms part of a COMPOUND
procedure. NFS Version 4 operations correspond
functionally to RPC procedures in former versions
of NFS. The server in turn groups the operation
replies into a single response. Error handling is
simple on the server – evaluation proceeds until
the first error or last operation whereupon the
server returns a reply for all evaluated operations.

We introduced the COMPOUND procedure to
reduce network round trip latency for related
operations, which can be costly over a WAN (for
example, the Internet). The model NFS Version 4
uses implies the NFS layer engages more closely
in the marshalling and unmarshalling of data,
which complicates implementation. NFS Version
3 was designed to be easy to implement given an
NFS Version 2 implementation. NFS Version 4
did not have that requirement. The only RPC
procedures in NFS Version 4, in the strict sense,
are NULL and COMPOUND, and their callback
analogues.

Table 1. groups the operations (or in the case of
NFS Version 2 and 3, RPC procedures)
functionally for purposes of comparison. The
comparison is a little unfair since the Network
Lock Manager, Status Monitor and Mount protocol
procedures needed by NFS Versions 2 and 3 are
not shown. Significant changes occurred to data
structures and semantics of existing operations,
some of which are described below.

The NFS Version 4 introduction of the stateful
operations OPEN and CLOSE is another major
structural difference. NFS Versions 2 and 3 were
essentially stateless. LOOKUP was the closest

analogue to an open operation in earlier versions of
NFS. However, a LOOKUP procedure did not
create state on the server. The introduction of the
stateful OPEN and CLOSE operations is required to
ensure atomicity of share reservations as defined
for Windows file sharing [CIFS], and to support
exclusive creates. Additionally, the OPEN
operation provides the server the ability to delegate
authority to a client, allowing aggressive caching
of file data and locking state.

The CREATE operation of NFS Version 4
differs from an NFS Version 3 CREATE in that it is
only used to create special file objects such as
symbolic links, directories, and special device
nodes. To ensure correct share reservation
semantics, the regular file CREATE procedure of
NFS Versions 2 and 3 is replaced by the NFS
Version 4 OPEN operation (with a create bit set).
CREATE and REMOVE in NFS Version 4 subsumes
the MKDIR and RMDIR directory functionality of
prior versions of NFS.

NFS Version 4 servers depart from the
semantics of previous NFS versions in requiring
LOOKUP requests to cross mount points on the
server. In NFS Version 4, a LOOKUP is very
simple. It only sets the current filehandle to point
at the file object resolved. Attributes (including
the filehandle itself) can be obtained with a
subsequent GETATTR operation in the same
COMPOUND procedure. Additionally, as defined in
WebNFS, LOOKUP takes a multi-component
pathname.

Previous versions of NFS assigned special
semantics to the directory entries “.” and “..”
NFS Version 4 assigns no special meaning to these
names, and requires the client to explicitly use the
LOOKUPP operation to obtain the filehandle of a
parent directory.

The Weak Cache Consistency information
(pre- and post-operation attributes) of NFS Version
3 has been removed. Instead, CREATE, LINK,
OPEN, REMOVE, and RENAME return a data structure
change_info (typically implemented as a
modified time) that provides information on
whether the directory underlying the object
changed during the operation. The client can use
this information to decide whether to flush cached
directory information in the face of concurrent
client modifications.

Underlying the NFS Version 4 protocol is
mandated strong security via an extensible
authentication architecture built on GSS-API. The

3

client determines the authentication type required
for a given file’s access using the SECINFO
operation. Initial authentication flavors supported
in this framework are Kerberos and LIPKEY. NFS
Version 4 defines a Windows NT and Unix-
compatible access control model.

The NFS Version 3 directory scanning
operation READDIRPLUS procedure was dropped,
and its functionality of providing attributes with
each directory entry (including the filehandle) is
now supported by the READDIR operation. This
“bulk LOOKUP” functionality is used to initialize
attribute caches when first scanning directories to
reduce latency introduced by a (now unneeded)
subsequent stream of LOOKUP operations.

Attributes of the file system underlying a file
system object (for example, file system free space)
exist in NFS Version 4 as attributes of the file
system object itself. This replaces the NFS
Version 3 procedures FSSTAT, FSINFO and
PATHCONF with an NFS Version 4 GETATTR
operation of the desired attributes.

As in NFS Version 3, file access rights are
checked on the server, not the client. However, in
NFS Version 4, file access rights are checked as
part of an explicit OPEN operation instead of the
NFS Version 3 LOOKUP and ACCESS procedure
sequence. In retrospect, the introduction of the
separate ACCESS procedure to handle access
checking in conjunction with an initial LOOKUP
(associated with a client application opening a file)
hurt performance by introducing further unwanted
network latency. The explicit ACCESS operation is
retained in NFS Version 4 to support the UNIX
access(2) programming interface which does
not require the file to be opened.

NFS Version 4 supports file system replication
and migration, but details of server-to-server file
system transfers are undefined.

Generalized file attributes are extensible
through the addition of named attributes.

File names in operations that use them are
UTF-8 encoded UCS strings [UTF8] to enable
internationalization.

3. File system model and sharing

A file system is an implementation of a single file
name space containing files, and provides the basis
for administration and space allocation. Associated
with each file system is a file system identifier, or
fsid, which is a 128-bit per-server unique

Table 1. NFS operations by version - at a glance
Version 2 Version 3 Version 4
NULL NULL NULL

Compound operations
 COMPOUND
 NVERIFY
 VERIFY
 Reserved Operation 2

OPEN/CLOSE operations
 OPEN
 OPENATTR
 OPEN_CONFIRM
 OPEN_DOWNGRADE
 CLOSE

Delegation operations
 DELEGPURGE
 DELEGRETURN
 SETCLIENTID
 SETCLIENTID_CONFIRM

Client callback procedures for delegation
 CB_NULL
 CB_COMPOUND
 CB_GETATTR
 CB_RECALL

Locking operations
 LOCK
 LOCKT
 LOCKU
 RENEW

Filehandle operations
 PUTPUBFH
 PUTROOTFH
 GETFH
 RESTOREFH
 SAVEFH

Security operations
 ACCESS ACCESS
 SECINFO

Traditional file operations
LOOKUP LOOKUP LOOKUP

 LOOKUPP
GETATTR GETATTR GETATTR
SETATTR SETATTR SETATTR
LINK LINK LINK

READDIR READDIR READDIR
 READDIRPLUS

READLINK READLINK READLINK
CREATE CREATE CREATE
MKDIR MKDIR

 MKNOD
REMOVE REMOVE REMOVE
RMDIR RMDIR
RENAME RENAME RENAME
SYMLINK SYMLINK
READ READ READ
WRITE WRITE WRITE

 COMMIT COMMIT
STATFS FSSTAT

 FSINFO
 PATHCONF

Never implemented
ROOT

WRITECACHE

18 ops 22 ops 42 ops

4

identifier. A file is a single named object
consisting of data and attributes, residing in a file
system. A regular file is a simple byte stream – not
a directory, symbolic link or special (device) file.
A filehandle uniquely identifies a file on a server
(and consequently in a file system on that server).

In all versions of NFS, a server contains one or
more file systems that are exported to clients.

However, in NFS Version 4, a server presents a
single seamless view of all the exported file
systems to a client. A client can move up and
down the name space, traversing directories
without regard to the structure of the file systems
on the server. The client can notice file system
transitions on the server by observing that the
fsid changes. Removing the requirement that a
client mount the different exported file systems of
a server separately rendered the NFS Version 2
and file system attribute procedures useless. The
server now reports file system attributes such as
the file system free space for the specific file
system underlying a file system object.

The client accesses the exported file systems of
the server by using the PUTROOTFH operation to
load the filehandle of the root of the file systems
tree into the current file handle for subsequent
operations.

3.1. Exporting file systems

An NFS Version 4 server exports file systems
similarly to prior versions of NFS. The export
operation makes available only those file systems,
or portions of file systems, desired to be shared
with clients. Further, the export operation allows
the administrator to specify the acceptable security

flavors by which a client can access a given
exported file system.

3.2. Pseudo-file systems

The subject may appear an insignificant one, but
we shall see that it possesses some interest.
 Darwin, The Formation of Vegetable
Mould…

On most operating systems, the name space
describes the set of available files arranged in a
hierarchy. When a system acts as a server to share
files, it typically shares (or “exports”) only a
portion of its name space, excluding perhaps local
administration and temporary directories.

Consider a file server that exports the
following directories:

 /vol/vol0
 /vol/vol1
 /backup/archive

The server provides a single view of the exported
file systems to the client as shown in Figure 1.

In NFS Version 4, a server’s shared name
space is a single hierarchy. In the example
illustrated in Figure 1., the export list hierarchy is
not connected. When a server chooses to export a
disconnected portion of its name space, the server
creates a pseudo-file system to bridge the
unexported portions of the name space allowing a
client to reach the export points from the single
common root. A pseudo-file system is a structure
containing only directories, created by the server
having a unique fsid, that allows a client to
browse the hierarchy of exported file systems.

 The server view

/

 vol backup

vol1 vol0 archive

admin

vol2

What the client sees

Figure 1. The Pseudo-file system

 export

/

 vol backup

vol1 vol0 archive

The Pseudo-file system constructed
by the server

5

The client’s view of the pseudo-file system is
limited to those paths that lead to exported file
systems. Because /vol/vol2 and
/admin are not exported in this example, they do
not appear to the client during browsing operations
as shown in the client’s view in Figure 1.

4. The COMPOUND procedure

NFS is an RPC-based distributed application.
Previous versions of the NFS protocol were
defined only in terms of remote procedure calls.
This approach has the significant limitation that
each RPC call defines a single request-response
transaction between the client and server incurring
a minimum network latency cost for each
transaction. A client may actually be required to
transmit a series of related requests on the network
to accomplish a single client operation.

NFS Version 4 introduces the COMPOUND RPC
procedure. The COMPOUND procedure groups
multiple related operations into a single RPC
packet. The RPC response to a COMPOUND
procedure contains the replies to all the operations.
Because of the simplicity of error handling
(evaluation of the operations stops on first error), it
may be unwise to attempt grouping unrelated
operations into a single COMPOUND procedure.

4.1. An example

The following denotations represent NFS
transactions in this paper. We represent a simple
client RPC request in NFS Versions 2 and 3 by:

→ LOOKUP

We represent a simple server RPC response by:

← LOOKUP OK

We represent a COMPOUND client RPC request
in NFS Version 4, which contains one or more
operations, by:

⇒ PUTROOTFH
LOOKUP
GETFH

We represent a COMPOUND server RPC
response in NFS Version 4, which contains one or
more replies to previous operations, by:

⇐ PUTROOTFH OK
LOOKUP OK
GETFH OK

Note the direction of the arrows in each
example.

We represent side effects of operations in NFS
Version 4 in the following way:

⇐ PUTROOTFH OK ↓CURFH

to suggest storing the current state of evaluation of
the COMPOUND procedure.

The following example illustrates not only the
use of the COMPOUND procedure, but also the
elimination of the Mount protocol and portmapper
through the use of a well-known port (2049).
Consider the traffic generated over the network by
the following simple commands on a Solaris
(UNIX) system:

mount bayonne:/export/vol0 /mnt
dd if=/mnt/home/data bs=32k count=1
 of=/dev/null

to mount a remote file system and read the first
32KB of the file.

Using NFS Version 3, the following sequence
results:

→ PORTMAP C GETPORT (MOUNT)
← PORTMAP R GETPORT
→ MOUNT C Null
← MOUNT R Null
→ MOUNT C Mount /export/vol0
← MOUNT R Mount OK
→ PORTMAP C GETPORT (NFS)
← PORTMAP R GETPORT port=2049
→ NULL
← NULL
→ FSINFO FH=0222
← FSINFO OK
→ GETATTR FH=0222
← GETATTR OK
→ LOOKUP FH=0222 home
← LOOKUP OK FH=ED4B
→ LOOKUP FH=ED4B data
← LOOKUP OK FH=0223
→ ACCESS FH=0223(read)
← ACCESS OK (read)
→ READ FH=0223 at 0 for 32768
← READ OK (32768 bytes)

The sequence above contains the simplified output
from an actual network trace. Each of the 11 pairs
of request and response transactions represents a
network round trip.

The following traffic would result in an NFS
Version 4 network:

⇒ PUTROOTFH
LOOKUP “export/vol0”

6

GETFH
GETATTR

⇐ PUTROOTFH OK ↓CURFH
LOOKUP OK ↓CURFH
GETFH OK
GETATTR OK

⇒ PUTFH
OPEN “home/data”
READ at 0 for 32768

⇐ PUTFH OK ↓CURFH
OPEN OK ↓CURFH
READ OK (32768 bytes)

Although an implicit “mount” occurred, the
SECINFO is not needed. The SECINFO operation
is only needed when the client attempts access
with the wrong security flavor and a
NFS4ERR_WRONGSEC error is returned.

In the above example, the number of round trip
requests for the same application in NFS Version 4
compared to prior versions is reduced from 11 to
two request and response transactions.

A client can aggressively use the COMPOUND
procedure to pre-load caches on initial reference.
Callaghan prototyped a super LOOKUP in the Java
client that emitted the following sequence on
initial access:

⇒ PUTFH
LOOKUP “image”
GETFH
GETATTR
ACCESS
READ at 0 for 32768

A client may be restricted through its file
system architecture in the generation of complex
sequences.

4.2. Properties of the COMPOUND
procedure

The set of operations in a COMPOUND procedure is
not atomic. That is, no assumptions can be made
as to whether conflicting operations occurred to
file system objects referenced in a COMPOUND
procedure between successive operations.

Error handling is simple on the server. If an
operation fails in a COMPOUND procedure,
evaluation halts and the remaining operations are
not processed. Replies are returned to the client up
to and including the error reply for the failed
operation.

Most operations require a filehandle and may
produce a filehandle as a result. In NFS Version 4,
however, most operations do not explicitly have a

filehandle as an argument or result. Instead, the
server maintains a single filehandle, the current
filehandle, as the argument for those operations.
To initially load the current filehandle the
operations PUTFH, PUTROOTFH and PUTPUBFH are
used. The SAVEFH operation stores an additional
filehandle for use by the LINK and RENAME
operations (which require two filehandles for the
source and target directories). RESTOREFH
retrieves the saved filehandle.

5. Multi-component LOOKUP

The multi-component LOOKUP allows a client to
resolve a full path name in one operation. The
client can detect mount point crossing by
inspecting the fsid of the directory containing the
object to be resolved and the fsid of the resolved
object. A UNIX client that detects a mount point
crossing can explicitly mount the separate file
systems for reporting space allocation information
to the user. A Java client doesn’t care.

A client can enter partial information for
intermediate nodes, filling in details with
additional operations to the server when
referenced.

Consider the following example. The
command:

ls /export/home/beepy

can result in the following initial sequence of
operations:

⇒ PUTROOTFH
LOOKUP “export” “home” “beepy”
GETFH
GETATTR

NFS Version 4 requires that symbolic links be
resolved relative to the client’s name space. If
beepy is a symbolic link, the LOOKUP will fail
with an NFS4ERR_NOTDIR error:

⇐ PUTROOTFH OK ↓CURFH
LOOKUP FAILED

The client must then resolve the pathname
component by component – still doable in a single
COMPOUND procedure. An equivalent sequence –
still in a single COMPOUND request is:

⇒ PUTROOTFH
LOOKUP “export”
GETFH
GETATTR
LOOKUP “home”
GETFH
GETATTR

7

LOOKUP “beepy”
GETFH
GETATTR

The benefit of this sequence, besides loading
the client attribute cache for interior directory
nodes, is that the client receives a partial result
from which to proceed in final pathname
resolution:

⇐ PUTROOTFH OK ↓CURFH
LOOKUP OK ↓CURFH
GETFH OK
GETATTR OK
LOOKUP OK ↓CURFH
GETFH
GETATTR OK
LOOKUP FAILED

This optimization would require more
sophisticated error recovery on the client.

6. Important data structures

The following data structures are fundamental
building blocks of NFS Version 4.

6.1. Filehandles

A filehandle, as in previous versions of NFS, is a
per server unique identifier for a file system object
that is opaque to the client. As in previous
versions of NFS, filehandles that are equal refer to
the same file system object. But no assumptions
can be made by the client if the filehandles differ.
In prior versions of NFS, procedures returned a
filehandle explicitly in the results structure. In
NFS Version 4, operations set an object called the
current filehandle as a side effect, for use by
subsequent operations in a single COMPOUND
procedure. A client uses the GETFH operation to
fetch the current filehandle.

There are two special filehandles: the root and
the public filehandles. These filehandles are
assigned to the current filehandle with the
PUTROOTFH and PUTPUBFH operations. A client
uses PUTROOTFH to gain initial access to the
filehandle of the common root of all exported file
systems on the server, as in the following
sequence:

⇒ PUTROOTFH
LOOKUP “export” “home”
GETATTR

⇐ PUTROOTFH OK ↓CURFH
LOOKUP OK ↓CURFH
GETATTR OK

The public filehandle identifies the portion of
the server name space used with WebNFS as
described in [RFC2054, RFC2055]. Unlike the
root filehandle, the public filehandle may be bound
to an arbitrary file system object. It may be that
the root and public filehandles are the same.

6.1.1. Persistent vs. volatile filehandles

In NFS Versions 2 and 3, filehandles returned by
the server were persistent. The client could count
on the filehandle always referring to same file. The
server would typically generate an opaque
persistent filehandle by including a unique inode
number, the inode's generation count, and device
number (fsid) of the disk partition that the
filehandle's object was allocated on. If the
underlying file object was deleted and replaced
with a file object of the same name, the change in
generation count maintained by the server would
result in a new filehandle being generated – and
invalidating any existing filehandles held by
clients. When the server received a request from
the client that included a filehandle, it was
straightforward to resolve the underlying file
object from the device number and inode number.

This model worked well for most UNIX-based
servers, but did not work for non-UNIX systems
that relied solely on a file's pathname for
identification, or for any local file system that did
not have a persistent equivalent to a compact
inode number (for example, the High Sierra file
system for CD-ROMs).

NFS Version 4 introduces the concept of
volatile filehandles. For volatile filehandles, a
client must cache the mapping between path name
and file handle, and regenerate the (possibly
different) filehandle upon filehandle expiration.
When a filehandle expires, the client gets an
NFS4ERR_FHEXPIRED error on the next access
and must flush any cached information that refers
to that filehandle.

The intent is that volatile filehandles expire
only upon certain events, such as:

• when an open file is closed
• when the file system the filehandle belongs to

is migrated
• when a client renames a file in some file

systems (as is the case with Linux NFS Version
2 and 3 servers today)

The weakest form of volatile filehandles allows
expiration at any time. This can be risky for a
client, such as when a second client removes a file,

8

and creates a new one with the same name. A
client that has the original file open would
regenerate the volatile file handle and then access
the new (unexpected) data resulting in corruption.
Volatile file handles this weak are best reserved for
isolated scenarios where a user knows they alone
are accessing the file system or the file system is
read only.

6.2. Client ID

A client first contacts the server using the
SETCLIENTID operation, in which it presents an
opaque structure identifying itself to the server,
together with a verifier. The opaque structure
uniquely identifies a particular client. A verifier is
a unique, non-repeating 64-bit object generated by
the client that allows a server to detect client
reboots. On receipt of the client’s identifying data,
the server will return a 64-bit clientid. The
clientid is unique and will not conflict with
those previously granted, even across server
reboots.

The clientid is used in client recovery of
locking state following a server reboot. A server
after a reboot will reject a stale clientid, forcing
the client to re-establish a clientid and locking
state.

 After a client reboot, the client will need to get
a new clientid to use to identify itself to the
server. When it does so, using the same identity
information and a different verifier, the server will
note the reboot and free all locks obtained by the
previous instantiation of the client.

6.3. State ID

A stateid is a unique 64-bit object that defines the
locking state of a specific file.

When a client requests a lock, it presents a
clientid and a unique-per-client lock owner
identification to identify the lock owner. A lock
owner is the thread id process id or other unique
identifier for the application owning a particular
lock on a client. On granting the lock, the server
returns a unique 64-bit object, the stateid, to be
used by the client in subsequent operations as a
shorthand notation to the lock owner information
now stored on the server. This not only prevents
another client from accessing a file in a manner
that conflicts with the locks that are held, it also
prevents unwanted replay by a broken router of I/O
requests with a previous stateid (which can
corrupt the locking state). A side effect of the

stateid is that it also provides a positive
acknowledgement to the server that all locks held
by the client are still valid, allowing an active
client to avoid explicit lease refresh.

7. OPEN and CLOSE

To make vertue of necessite.
 Chaucer, The Canterbury Tales

Apart from the Network Lock Manager, NFS
Versions 2 and 3 were essentially stateless
protocols (other than for necessarily persistent file
objects on the server). This presented problems in
implementing the functions of file locking and file
sharing (with Windows operating system
semantics) required for correct operation of client
applications. Further, aggressive client caching
with well-defined semantics was impossible.

NFS Version 4 introduces an OPEN operation
that provides an atomic operation for file lookup,
creation and share reservation. To provide correct
share reservation semantics, an NFS Version 4
client must use the OPEN to obtain the initial
filehandle for a file. Windows requires the ability
to atomically create a regular file with a share
reservation - the OPEN operation (with a create bit
set) provides these semantics.

The CLOSE operation releases the state
accumulated by an OPEN.

8. Caching and delegation

NFS has never implemented distributed cache
coherence, nor supported concurrent write-sharing
in the absence of locking, and NFS Version 4 does
not change that. However, client-side caching is
essential to good performance. NFS has always
supported client caching – albeit with restrictions
and a loss of strict cache coherence.

NFS Version 4 differs from previous versions
of NFS by allowing a server to delegate specific
actions on a file to a client to enable more
aggressive client caching of data and to allow
caching of locking state for the first time. A server
cedes control of file updates and locking state to a
client for the duration of a lease via a delegation.

8.1. Client-side caching

NFS Version 4 file, attribute, and directory
caching resembles that in previous versions.
Attributes and directory information are cached for
a duration determined by the client. At the next
use after the end of a predefined timeout, the client

9

will query the server to see if the file system object
has changed.

When opening a regular file, the client
validates cached data for that file. The client
queries the server to determine if the file has
changed. Using this information, the client
determines if the data cache for the file should be
kept or flushed. When the file is closed, the client
writes any modified data to the server. This
technique of close-to-open consistency
[Pawlowski94] has provided sufficient consistency
for most applications and users.

If an application wants strict serialized access
to file data, share reservations or file locking of
specific file data ranges should be used.

Previous versions of NFS avoided the use of
client-side data caching when record locking was
in effect. Version 4 defines rules that allow data
caching during locking while maintaining cache
integrity. COMPOUND operations allow fetching the
modified time for a file after obtaining a record
lock, without additional latency, simplifying the
implementation of these rules.

8.2. Open delegation

In NFS Version 4, when a file is only being
referenced by a single client, responsibility for
handling all of the OPEN and CLOSE and locking
operations may be delegated to the client by the
server. This eliminates OPEN and CLOSE requests,
allows locking requests to be resolved locally, and
eliminates normal NFS client periodic cache
consistency checks – reducing over-the-wire traffic
and associated latency. Since the server on
granting a delegation guarantees the client that
there can be no conflicting OPEN operations, the
cached data is assumed valid. The server may also
allow the client to retain modified data on the
client without flushing at CLOSE time, if it can be
guaranteed that sufficient space will be reserved on
the server ensuring that subsequent WRITE
operations will not fail due to lack of space.

When many clients share a file, in the absence
of writing, the server may delegate the handling of
read-only OPEN operations to multiple clients.
This allows OPEN and CLOSE operations to be
avoided. Since such a delegation will only persist
in the absence of writers, the client is assured that
cached data is valid, without periodic consistency
checks to the server.

A lease is associated with a delegation. If the
lease expires, the delegation will be revoked, just
as with locks.

Delegation allows common patterns of limited
sharing and read-only sharing to be dealt with
efficiently, avoiding extra latency associated with
frequent communication with the server. When
these patterns no longer obtain, the delegation is
revoked and normal client-side caching logic is
used.

8.3. Client callbacks

Revocation of delegation requires the client to
update state on the server to reflect changes made
by the client as part of the delegation, and then
return the delegation to the server. Upon return of
the delegation, the server will centrally manage
OPEN and locking operations.

Revocation is accomplished by making a
callback. A callback is an RPC from the server to
the client to inform it of server actions. Because
callbacks may have problems transiting firewalls,
callbacks are not required for proper operation of
the protocol. A server will test whether a client
can respond to callbacks by making an initial
CB_NULL request to the client. If a client fails to
respond, the server will not delegate authority to
that client.

8.4. Delegations vs. Windows OpLocks

Delegation has many similarities to Opportunistic
Locks (OpLocks) used by CIFS [Borr], and was
inspired by the benefits which that mechanism
provides. The differences between them reflect the
different histories of the two protocols and the
problems they solve.

Delegations differ from OpLocks in that a
delegation is an optimization that is solely up to
the server while OpLocks are requested by the
client. The ability to delegate depends on a
network configuration that the server can verify,
plus specific sharing patterns.

When OpLocks are lost or not available, CIFS
sends all operations to the server while NFS can
fall back to its standard modes of (periodically
checked) client-side caching when delegations are
unavailable. This makes delegation less critical a
feature, but delegation – when possible – provides
many performance benefits, particularly when
applications are doing frequent file locking
operations.

10

Delegations can persist beyond the OPEN
operation which gave rise to them, like Batch
OpLocks in Windows, allowing subsequent OPEN
operations to be cached on the client. Delegated
files can be shared by many applications on a
single client with the proper state for all transferred
back to the server upon delegation revocation.

9. Locking

NFS Version 4 locking is similar to the adjunct
Network Lock Manager (NLM) protocol used with
NFS Versions 2 and 3, but it is tightly coupled to
the NFS protocol to better support different
operating system semantics and error recovery.

A major failing of the NLM protocol was the
detection and recovery of error conditions. The
design assumed that the underlying transport was
reliable and preserved order. With NLM, an
unreliable network easily resulted in orphan locks
on the server. In addition, if a client crashed and
never recovered, locks could be permanently
abandoned, preventing any other client from ever
acquiring the lock.

9.1. Leases

The key change in NFS Version 4 locking is the
introduction of leases for lock management.

A lease is a time-bounded grant of control of
the state of a file, through a lock or delegation,
from the server to the client. During a lease
interval a server may not grant conflicting control
to another client. A lease confers on the client the
right to assume that a lock granted by the server
will remain valid for a fixed (server-specified)
interval and is subject to renewal by the client. The
client is responsible for contacting the server to
refresh the lease to maintain the lock.

The expiration of a lease is considered a failure
in the communications between the client and the
server, requiring recovery. If the lease interval
expires without a refresh from the client, the server
assumes the client has failed and may allow other
clients to acquire the same lock. If the server fails,
on reboot the server waits a duration equal to a
lease interval for clients to reclaim the locks that
they may still hold, before allowing any new lock
requests.

Leases or token-based state management exists
in several distributed file systems [Kazar90,
Macklem94, Srinivasan].

Most operating systems demand that a lock is
irrevocable once acquired by an application.
Unlike leases used to manage cache consistency
where leases are kept short to prevent unnecessary
delays in normal operations, the lock lease
intervals can be substantially longer, reducing the
number of lease refreshes required, one of the
primary drawbacks of a lease-based protocol.

In addition, the lease protects against a loss of
the locking state by the client. A client exists in
two states: either all the locks held from a given
server are correct or all are lost. A refresh of any
lock by the client validates all locks held by the
client to a particular server. This reduces the
number of lease refreshes by the client from one
per lock each lease interval, to one per client each
lease interval, eliminating another drawback of a
lease-based protocol.

9.2. Mandatory locking

Better interoperability with non-Unix operating
systems is an important goal of NFS Version 4. A
key feature of the Windows operating systems, and
available on some Unix operating systems, is
mandatory locking - the ability to block I/O
operations by other applications on a file that
contains a record lock. The NLM protocol
provided only for advisory locking which allowed
cooperating applications to synchronize I/O
operations, but did not block other applications
from performing I/O operations to the file. To
handle this additional semantic, the concept of a
stateid was added to NFS Version 4.

9.3. Share reservations

To provide better interoperability, NFS Version
4 fully supports share reservations. A share
reservation grants a client access to open a file and
the ability to deny other clients open access to the
same file. A share reservation is similar to a file or
record lock, except that its granularity is always on
an entire file, and its lifetime equals the duration of
the file open. Normal file and record locks do not
interact with share reservations - a share
reservation is distinct from a record lock in that it
only governs the ability to open a file.

For example, an application may open a file for
read access and acquire a share reservation
denying other subsequent opens that request write
access. The NLM protocol supported clients that
use this style of lock to cooperate amongst
themselves, but it did not enforce it between non-
cooperating clients. More importantly, a share

11

reservation was not tied into other operations that
implicitly open a file, such as CREATE. This
exposes a race condition where one client could
create a file, and before the second operation to
acquire a share lock denying other clients access is
received, another client acquires a conflicting
reservation. The addition of an explicit OPEN
operation correctly supports share reservations.

The OPEN operation takes as parameters the
traditional desired access of read or write and, in
addition, allows the application to deny read or
write access to other applications. The server
response contains a stateid that is used by the
server to enforce share reservations. A
corresponding CLOSE operation allows a client to
free the held share reservations.

9.4. Sequence IDs

The most problematic part of network locking is
dealing with lock requests that arrive out of order
or are replayed. As an example, a client issues a
sequence of lock, unlock, and lock requests. If a
misbehaved router replays a previous unlock
request other clients may acquire a conflicting lock
and corrupt data. The RPC layer's transaction id
will defend against many of these replay errors,
but the server duplicate request caches are
frequently not large enough to handle even modest
windows of time [Juszczak]. Locking requests by
an application in virtually all operating systems are
strictly ordered, defining a well-known state of the
file. This requires that a server in a distributed file
system also process the locking requests in the
required strict order.

NFS Version 4 adds to every lock and unlock
operation a monotonically increasing sequence
number to provide at-most-once semantics. The
server maintains for each lock owner the last
sequence number and the response sent. If a
second request is received with the last sequence
number, the response is replayed under the
assumption that the previous response was lost. If
an earlier sequence number is received then an
error is returned as it must be a replay of a
previously received response. A sequence number
beyond the next sequence number is also rejected.

10. Attributes

The attribute model for NFS Version 4 is different
from prior versions in providing a mechanism for
extensibility. NFS Version 4 defines three types of
attributes:

• Mandatory
• Recommended
• Named

Mandatory and recommended attributes are
defined in terms of a bit vector to allow efficient
implementation of operations that return or
manipulate those attributes. A mask defines those
attributes that are to be manipulated – with unset
bits representing attributes to be ignored.

10.1. Mandatory attributes

Mandatory attributes represent the baseline
attributes that must be supported or emulated by
every implementation. Mandatory attributes
include:

• Object type
• Filehandle expiration type
• Change indicator
• Size
• UNIX LINK support
• UNIX SYMLINK support
• fsid
• Lease duration

10.2. Recommended attributes

The recommended attributes include:

• ACL
• Archive bit
• Case insensitive
• Case preserving
• Change owner restricted
• No file name truncation beyond maximum
• Filehandle
• File ID
• Hidden
• Maximum file size
• Maximum number of links
• Maximum filename size
• Maximum read size
• Maximum write size
• MIME type
• UNIX mode bits
• Owner string
• Group string
• Modify time
• Create time
• Access time
• Space available to user
• File system free space
• File system total space

12

• Space used by object

ACLs are a special recommended attribute and
are described below in the section on security.

10.3. Named attributes

NFS Version 4 introduces named attributes for the
first time. The model for named attributes is
simple. Associated with each file system object is
a hidden directory containing all its named
attributes. The data associated with the named
attributes is an uninterpreted (by NFS) stream of
bytes. A client would access named attributes in
the following way:

• The OPENATTR operation sets the current
filehandle to the named file attribute directory
for the file object

• READDIR and LOOKUP operations retrieve file
handles for the various named attributes
associated with the original file system object.

Named attributes require support on the server,
and are a feature of common file systems like
Windows NTFS.

11. Security model

NFS relies on the underlying security model of
RPC for its security services. A variety of
authentication flavors have been defined for use by
NFS going back to the Diffie-Hellman public key
authentication scheme defined for use with NFS
Version 2 [Taylor]. However, no model other than
the weakly authenticated UNIX permission
scheme was ever widely adopted, limiting the use
of NFS in hostile networks (for example,
universities).

While NFS Version 3 introduced the ACCESS
procedure in part to support flexible ACL-based
access control, no agreement was ever reached on
a common ACL format to allow heterogeneous
access control.

In the area of security, NFS Version 4
improves over NFS Versions 2 and 3 by:

• mandating the use of strong RPC security
flavors that depend on cryptography

• negotiating the security used via a system that
is both secure and in-band

• using character strings instead of integers to
represent user and group identifiers

• supporting access control that is compatible
with UNIX and Windows

• removing the Mount protocol.

11.1. GSS-API framework

NFS is based on ONCRPC [RFC1831] and
leverages its security architecture, recently
bolstered by the addition of a security flavor based
on the Generic Security Services API (GSS-API),
called RPCSEC_GSS [RFC2203]. RPCSEC_GSS
is a security flavor allocated under the same flavor
number space as the commonly used AUTH_SYS
flavor; AUTH_SYS is flavor number 1,
RPCSEC_GSS is flavor number 6. The flavors
between 1 and 6 represent efforts such as [Taylor]
to improve RPC security that became obsolete due
to advancements in attacks based on brute force
[EFF] and better cryptanalysis [LaMacchia].

RPCSEC_GSS differs from AUTH_SYS and
other traditional flavors in two ways:

• First, RPCSEC_GSS does more than
authentication. It is capable, albeit at
considerable expense of CPU execution time
[Eisler96], of performing integrity checksums
and encryption of the entire body of the RPC
request and response. Hence, RPCSEC_GSS is
a security flavor, and not just an authentication
flavor.

• Second, because RPCSEC_GSS simply
encapsulates the GSS-API messaging tokens –
it merely acts as a transport for mechanism-
specific tokens for security flavors like
Kerberos. Adding new security mechanisms
(as long as they conform to GSS-API) does not
require re-writing significant portions of NFS
or any other ONC RPC-based application.

11.2. Mandated strong security

All versions of NFS are capable of using
RPCSEC_GSS. The difference is that while an
implementation can claim conformance to NFS
Versions 2 and 3 without implementing support for
RPCSEC_GSS, a conforming NFS Version 4
implementation must implement RPCSEC_GSS.
Furthermore, conforming NFS Version 4
implementations must implement security based
on Kerberos Version 5 (in this paper, simply
Kerberos) [RFC1510] and LIPKEY [Eisler00],
each of which are GSS-API conforming security
mechanisms.

11.2.1. Kerberos versus LIPKEY

Kerberos divides user communities into realms.
Each realm has an administrator responsible for
maintaining a database of principals (users). Each
realm has one master Key Distribution Center
(KDC), and one or more slave KDCs that give

13

users tickets to access services on specific hosts in
a realm. Users in one realm can access services in
another realm, but it requires the cooperation of
the administrators in each realm to develop trust
relationships and to exchange per-realm keys.
Hierarchical organization and authentication of
realms can reduce the number of inter-realm
relationships.

Kerberos has been used on other distributed
file systems, such as the Andrew File System
[Howard], the Open Software Foundation's
Distributed File System [Kazar], NFS Version 2
and 3 [RFC2623], and most recently, Microsoft's
CIFS (Windows 2000) [Microsoft00]. Kerberos is
an excellent choice for enterprises and work
groups operating within an Intranet, since it
provides centralized control, as well as single sign
on to the network.

But NFS Version 4 is also designed to work
outside of intranets on the global Internet.
Kerberos does not work well on the Internet. The
user would need the cooperation of his local
system administrator to negotiate a trust
relationship with the administrator of the remote
realm.

The Low Infrastructure Public Key (LIPKEY)
system provides an SSL-like model and equivalent
security for use on the Internet. LIPKEY is a GSS-
API security mechanism using a symmetric key
cipher and server-side public key certificates.

The LIPKEY user experience is similar to that
of HTTP over the Secure Sockets Layer (SSL). A
user is prompted for a user name and password.
These are encrypted with a 128-but symmetric
session key. The session key is encrypted with the
server’s public key and all are sent to the server.
The client authenticates the server by comparing
the latter’s certificate with a list of trusted
Certification Authorities.

11.3. Why not SSL?

NFS Version 4 does not use SSL [SSL]. The
primary issue with SSL is that it does not work
over connectionless protocols like UDP, whereas
NFS does. The second problem is that as
mentioned previously, RPC has its own security
architecture – it is unclear how to cleanly merge
SSL and RPC security. RPCSEC_GSS provides
equivalent security, yet is compatible with flavors
like AUTH_SYS.

11.4. Kerberos in Windows 2000 vs.
UNIX

As noted in [Ts'o], Windows 2000's Kerberos has
some incompatibilities with most other Kerberos
implementations. Windows 2000 uses the pre-
authentication field in Kerberos messages to
encode a proprietary representation of the
privileged access groups (PAGs) that a user
belongs to. This way, when a Kerberized client
talks to a Kerberized-server, the server knows
immediately what groups the user belongs to. This
is both an efficient and non-interoperable scheme,
which is exacerbated by no published
documentation on the format of the PAG list, and
what the PAG entries mean.

Most Kerberized servers outside of Windows
2000 would do something different. For example,
an NFS server in the UNIX space would map the
principal name to the UNIX user identifier, and the
UNIX user identifier to the list of groups
associated with the user. It is no less efficient to do
it this way, because it is possible to compute the
mappings upon user addition to the directory
services domain that the NFS server lives in. This
approach also has the virtue of being completely
inter-operable with non-UNIX clients.

The effect of PAGs on NFS is that if a
Windows 2000-based NFS Version 4 client or
server uses PAGs, then it will not interoperate with
a non-Windows 2000-based server or client.
Otherwise, there are no issues with the Windows
2000 and non-Windows 2000 nodes on the
network sharing the same Kerberos key space.

11.5. Negotiating security

NFS Version 2 had no way to negotiate security,
which meant that if an NFS server exported a file
system with something other than AUTH_SYS,
there was no way for it to tell the client. Unless the
client mounted the file system with an explicit
mount option for different security, the mount
attempt would fail.

NFS Version 3 enhanced the Mount protocol to
include a list of security flavors that the client
could use to mount the file system. The problem
with this approach is that the Mount protocol itself
was not secure. While in theory, the Mount
protocol could use RPCSEC_GSS, in practice,
Mount servers were not required to support
RPCSEC_GSS.

NFS Version 4 deals with negotiation of
security by including a new SECINFO operation

14

that allows a client to ask what security the server
requires for a given file object. The SECINFO
operation's arguments and results are secured using
one of the mandatory security flavors. The results
of a SECINFO call define the RPC security flavors
that should be used, and for each flavor any
required additional information. For example, if
SECINFO specifies that AUTH_SYS can be used,
no additional information is needed. However, if
SECINFO specifies to use RPCSEC_GSS, because
RPCSEC_GSS is merely a security mechanism
switch more information is needed. The client and
server will then negotiate the Object Identifier of
the GSS-API mechanism, what quality of
protection to use, and whether to use
authentication, integrity (checksummed arguments
and results), or privacy (encrypted arguments and
results – full user data encryption).

11.6. String identifiers

NFS Versions 2 and 3 represented users and
groups via 32 bit integers. The NFS protocol uses
user and group identifiers in the results of a get
attribute (GETATTR) operation and in the
arguments of a set attribute (SETATTR) operation.
Using integers to represent users and groups
requires that every client and server that might
connect to each other to agree on user and group
assignments. Not only is this impractical across the
Internet, but problematic for some large
enterprises. Some feel that a secondary issue is that
32 bits to represent users is not large enough.

NFS Version 4 represents users and groups in
the form:

 user@domain

or

 group@domain

where domain represents a registered DNS
domain, or a sub-domain of a registered domain.
By leveraging the global domain name registry and
delegating user and group identifier control, NFS
Version 4 does not require IANA to develop yet
another global registry to guarantee uniqueness.

One issue with using string names, instead of
integers, is that UNIX systems like Solaris will
still be using integers in the underlying file
systems stored on disk. This requires mapping
string names to integers and back. Since NFS
clients and servers have done something similar
with security flavors like RPCSEC_GSS and
AUTH_DH [Taylor] that use string names for

principals and not integers, we did not see a risk
from removing integer based identifiers from the
protocol.

11.6.1. UUIDs

We did consider Universal User Identifiers
(UUIDs) instead of strings. However, UUIDs still
have the translation issue, since they are 128 bits
long versus 32 bits for UNIX identifiers.
Furthermore, in situations where a client receives a
GETATTR result with an untranslatable identifier, it
was felt that a string like ted@eisler.com would
be more useful than a string of 128 bits. We
anticipate that UNIX implementers might consider
adding a stat(2) system call variant that returns
the file system's native string representations if
available.

11.7. Access Control Lists

An Access Control List, or ACL, is simply a list
that describes which users and groups get access to
a file with what type of access (for example, read
versus write). NFS Versions 2 and 3 do not have
support for an ACL attribute, although there are
several proprietary protocols for manipulating
ACLs over NFS based on the POSIX Draft ACL
specification. Such ACL support never saw wide
use, perhaps due to the proprietary nature of the
protocols and that the POSIX specification was
never standardized.

NFS Version 4 includes ACL support based on
the Windows NT model and not the POSIX model.
The reasons are that compared to the POSIX
model, the NT model is both richer, and widely
deployed.

The richness of the NT model is seen in that an
Access Control Entry (ACE) within an ACL can
be one of four types: ALLOW, DENY, AUDIT, or
ALARM. ALLOW and DENY simply means the
ACE allows or denies the specified access to the
entity attempting access. AUDIT means if the
entity in the ACE attempts the specified access,
log the attempt. ALARM generates a system
dependent alarm if the entity in the ACE attempts
the specified access. The POSIX model does not
support AUDIT and ALARM.

One major difference between the NT and
POSIX ACL models prevents NT from being a
strict superset of the POSIX. In the NT model, the
first ACE in the ACL that denies or allows access
corresponding to the principal, or the principal's
group making the request, determines if access is
allowed. In the POSIX model, there are two kinds

15

of ACEs: user entries and group entries. In the
POSIX model, the user identifier is checked
against the user entries first, and if the access is not
unambiguously granted or denied, then the user's
group identifiers are each checked against the
group entries in the ACL. We feel that in practice
this subtlety is unimportant.

There do exist systems today with POSIX
ACLS that are incompatible with the ACLS
defined for NFS Version 4. An NFS
Version 4 server on such a system could continue
to compute a user's access to a file with an
incompatible POSIX ACL per the POSIX draft.
As long as the ACL on the file does not change,
there is no issue. When a client changes the ACL
via the SETATTR operation, the server can
replace the incompatible POSIX ACL with an NFS
Version 4 compatible ACL as long as it assures
that:

• the resulting ACL is not more permissive than
the pre-existing POSIX ACL

• the resulting ACL is not more permissive than
what the client intended.

11.8. Removing the Mount protocol

Unlike NFS Versions 2 and 3, NFS Version 4 has
no Mount protocol. As a byproduct, this closes a
security hole. Suppose there exists an exported
directory called

/export/alice/safe/A.

Suppose the permissions on

/export/alice/safe

do not allow anyone but safe's owner, Alice,
access, but the permissions on
/export/alice/safe/A are wide open. An NFS
Version 2 or 3 client would normally be allowed to
get a filehandle for /export/alice/safe/A and
mount it, thus allowing a second party wrongful
access.

Since NFS Version 4 has no way to distinguish
mount attempts from other accesses, any client but
Alice that attempts to get a filehandle for
/export/alice/safe/A will be denied.

12. Migration and replication

To improve availability, NFS Version 4 has added
features to support file system migration and
replication.

A file system can migrate to a new server and
the clients notified of the change by means of a

special error code. A client is informed of the new
location by means of the fs_locations file
attribute. It may then access the file system on the
new server transparently to applications running on
the client.

The fs_locations attribute may also
designate alternate locations for a (read-only) file
system. If a client finds a file system unresponsive
or performing poorly, it may choose to access the
same data from another location. If a server
implementation is concerned about the persistence
of filehandles in the face of migration, it can vend
volatile filehandles. The client will re-LOOKUP
open files using saved pathname components on
switching to a new server.

13. Minor versioning

This is the second major revision of NFS. In the
past, NFS has been extended by overloading the
semantics of existing procedures – without
recourse to a formal protocol revision.
Unfortunately, this sometimes hurt
interoperability. One goal of the NFS Version 4
effort was to provide a framework for minor
versioning of the protocol to facilitate rapid,
simple evolution.

Minor versioning is left mostly undefined in
the base NFS Version 4 protocol. A Reserved
Operation 2 exists to provide minor version
negotiation in a future minor revision. The
COMPOUND arguments also include a minor version
field (currently 0). Via the reserved operation, a
client will query the server for minor versions
supported – negotiating capabilities in a similar
fashion to today’s version binding in RPC. Minor
version negotiation is client driven. A minor
version 0 server (the current protocol definition)
identifies itself as only supporting version 0 by
returning NFS4ERR_NOTSUPP – operation not
supported - on attempts to invoke Reserved
Operation 2.

The base specification (minor version 0) has
some recommended rules for future work groups
on managing the creation of a minor version. For
example, allowing extension through the addition
of additional attributes, but avoiding deletion of
attributes existing in previous minor versions.

14. Modifications for use on the Internet

In the area of suitability for the Internet, NFS
Version 4 improves over NFS Versions 2 and 3 by:

• requiring TCP as a transport

16

• defining COMPOUND operation to reduce round-
trip latency

• defining a global user identifier name space
• mandating strong security based on a public

key scheme
• enabling operation through firewalls

14.1. TCP is mandatory

The NFS Version 4 specification requires that any
transport used provide congestion control. The
easiest way to do this is via TCP. By using TCP,
NFS Version 4 clients and servers will be able to
adapt to known frequent spikes in unreliability on
the Internet [Martin].

14.2. Reduced round trip latency

As illustrated in the examples of section 4.1, the
COMPOUND procedure enables clients to pack more
operations in a single request, thus significantly
reducing round trip latency.

14.3. Global user name space

As described in 11.6, user and group identifiers are
string names allocated relative to DNS domain
names. Because the identifiers are completely
generic, with no bias toward UNIX, NT, or any
other operating system, the consumer need not be
impacted if the service provider changes platforms,
nor is the service provider impacted if the
consumer changes platforms.

14.4. Mandatory security

As described in 11.2., NFS Version 4 clients and
servers must support LIPKEY, a public key
scheme that has similar properties to SSL. Both
SSL and LIPKEY share properties that make them
suitable for the Internet, namely that customers and
vendors can get together without prior
establishment of complex trust relationships.

The e-commerce market place has proven to be
quite dynamic. If another security technology
replaces the simple public key approaches of SSL
and LIPKEY, the flexibility of GSS-API will ease
the introduction of this new security mechanism.

14.5. Firewall Friendly

To access an NFS server, an NFS Version 2 or 3
client must contact the server's portmapper to find
the port of the Mount server. It contacts the Mount
server to get an initial file handle. Then it contacts

the portmapper to get the port of the NFS server.
Finally, the client can access the NFS server.

This creates problems for using NFS through
firewalls, because firewalls typically filter traffic
based on well known port numbers. If the client is
inside a firewalled network, and the server is
outside the network, the firewall needs to know
what ports the portmapper, Mount server, and NFS
server are listening on. The Mount server can
listen on any port, so telling the firewall what port
to permit is not practical. While the NFS server
usually listens on port 2049, sometimes it does not.
While the portmapper always listens on the same
port (111), many firewall administrators, out of
excessive caution, block requests to port 111, from
inside the firewalled network to servers outside the
network.

NFS Versions 2 and 3 are not practical to use
through firewalls.

NFS Version 4 solves the issue by eliminating
the Mount protocol, and mandating that the server
will listen on port 2049. This means that NFS
Version 4 clients do not need to contact the
portmapper, and do not need to access services on
floating ports, making firewall configuration as
simple as configuration for HTTP.

15. A common Internet file system

One ring to rule them all,
 Tolkien

NFS Version 4 lends itself to several applications
on the Internet.

15.1. An open download protocol

The Internet is rapidly becoming the primary
means for distributing large files containing
installable software, documents, and multi-media.
Most downloads use the File Transfer Protocol
(FTP), or HTTP. For slow links, large file
downloads have an almost certain chance of
aborting, with no recourse for the user but to start
over again. While NFS is designed to be a file
access protocol, because NFS allows the clients to
read files from arbitrary offsets, it is a superior file
transfer protocol. If the TCP connection breaks
due to timeout or other reasons, the client can
simply re-connect and continue (transparently to
the user). With the use of LIPKEY, the client and
server can protect the transfers from third party
eavesdropping or tampering.

17

15.2. Consumer backup and restore

The cost of disk space on personal computers
seems to be approaching US$1 (or 1.04€ or ¥107)
per gigabyte. With the capability to store more
data, the odds of a user losing data are increasing.
Outside the home, data management policies are in
place to ensure that valuable data is not lost due to
a failure in the storage system. These policies
include backup of data to tertiary storage, and the
use of redundant arrays of disks or file servers.
Within the home, it is impractical to expect the
average consumer to implement formal data
management. While we are seeing the emergence
of low-end appliances for storing data redundantly,
that these appliances are co-located with the user’s
primary data violates the principle of having off-
site backups.

Several web sites today provide file backup
and restore services. By definition, these web sites
are off site. As high bandwidth links like DSL and
cable modem become available to users, it
becomes increasingly practical to backup larger
amounts of data, obviating the need for on-site
backups at home.

So far, these services are based on HTTP and
FTP, which suffer from the same problems as file
download for large file transfer. Again, NFS
Version 4, secured via LIPKEY, offers a superior
approach, providing strong authentication and
privacy.

15.3. The Internet disk

Combining high-bandwidth persistent connections
like DSL with NFS Version 4 delegation and
sophisticated caching allows one to envision a time
when users will prefer that the master copies of
their data always exist on the service provider -
who can better deal with the complexity of reliable
data management.

For example, in the morning, before work, the
user can access his data, which results in a
transparent download of a subset of it to local
storage, and manipulate it locally. Before going to
work, the user “saves” it. When the user arrives at
work, he will be able to access the same version of
the data he was working on at home, because
either his NFS Version 4 capable desktop at home
has synchronized its dirty cache with the server, or
the server will revoke the delegation to gain access
to the latest data. The user at the office will be
blocked from accessing his data until the server
has a consistent copy.

16. Future Work

[Pawlowski] described several follow-on tasks for
NFS Version 3. Of those tasks, NFS Version 4
addresses strong security, while it does not provide
support for concurrent write sharing (though we
introduce delegations for improved caching
performance), nor does it support disconnected
operation. Changes to the export model and
allowing mount point crossing when browsing
from a single server root partially address
consistent name space construction.

Curiously missing from the analysis in 1994 is
recognition of the growing importance of support
for file sharing on the Internet – which the design
NFS Version 4 strongly reflects.

Given that track record of predictions, let’s
take a stab at presenting expected future work in
the NFS Version 4 space.

16.1. IETF standardization

At the time of this writing, the working draft of the
NFS Version 4 protocol specification has been
submitted to the Internet Engineering Steering
Group for consideration as a Proposed Standard –
the first formal step towards the goal of achieving
Internet Standard acceptance [RFC2026].
Specifications intended to become Internet
Standards evolve through a set of maturity levels
known as the "standards track". These maturity
levels - Proposed Standard, Draft Standard, and
Standard - reflect movement through the IETF
standards process. While achieving Proposed
Standard designation does not require
implementation experience, we chose to prototype
the specification to prove out concepts.

The construction of two independent,
interoperable conforming implementations based
on the specification are required to achieve Draft
Standard status. Some changes may occur between
Proposed Standard and Draft Standard status, but
these are not expected. A Draft Standard is
normally considered to represent the final
specification – any changes made to the protocol
beyond this reflect specific (otherwise insoluble)
problems. Internet Standard achievement follows
widespread experience with the Draft Standard and
its implementations.

16.2. Minor versioning

Details of minor version negotiation, and change
coordination for minor versioning, remain for
future versions of the working group. Reserved

18

operation 2 provides the ability to evolve NFS
Version 4. Some suggested rules for future efforts
in minor versioning appear in the draft
specification.

16.3. Performance

The reduction in network latency with the use of
the COMPOUND procedure comes at the cost of
additional complexity in operation coding and
decoding on the client, and increased complexity
in handling error returns. More experience is
needed in this area to understand the costs.

The attribute model and the use of a bit mask to
describe attributes of interest to be fetched by the
client generated much discussion. The trade-off of
possibly reduced work on the server in loading
only those attributes of interest is pitted against the
increased decode complexity (and branching) in
the implementation to handle a variable attribute
return. The costs of the attribute model will be
explored during further implementation.

16.4. Migration and replication

A server in NFS Version 4 can inform a client
when multiple copies of a file system exist, or
when a file system has moved. The client uses this
information to adapt to changing network
conditions and file system relocation. This
provides a framework for migration and
replication.

NFS Version 4 does not address server-to-
server file system migration protocols or the issues
of maintaining replica consistency and migration
atomicity. It remains for future working groups to
define. Until then, vendor-specific solutions may
arise.

16.5. Single system image or name space

[Kazar, Howard, Microsoft99] describe approaches
to providing a shared consistent name space that
hides server details of data location from users.
An NFS Version 4 server hides some details of
data location by presenting a per-server single
image of all exported file systems to a client.
There is interest in providing a general scheme for
a global, server independent name space within the
context of NFS Version 4.

16.6. High performance locking

NFS Version 4 maintains lock ordering and
supports mandatory blocking locks, but these
features are based on a polling model. Fast lock

cycling is critical to application locking
performance, and this may be a weakness in our
model and an area for future redesign.

16.7. SFS benchmark

The SPEC organization’s SFS benchmark is a
standard for measuring the performance of NFS
implementations [Robinson]. An NFS Version 4
version of the benchmark remains to be done.

17. Resources for developers

The primary site for NFS Version 4 information is:

 http://www.nfsv4.org

Pointers to relevant sections of the Internet
Engineering Task Force site:

 http://www.ietf.org

can be found there.

The CITI group at the University of Michigan is
developing an open source reference
implementation, and their work can be accessed at:

 http://www.citi.umich.edu/projects/nfsv4/

18. Acknowledgements

The NFS Version 4 working group in the IETF
contributed immensely not only to the
specification, but to the discussion around the
changes to the architecture and semantics of the
protocol. Spencer Shepler was the editor of the
NFS Version 4 protocol specification through its
life in the working group. EMC, Hummingbird
Communications Ltd. Network Appliance Inc.,
Sun Microsystem, Inc., and the University of
Michigan/CITI research group participated in the
first interoperability testing. Gordon Waidhofer
often acted as the working group’s conscience.

19. Bibliography

[Borr] Borr. A., “SecureShare: Safe
UNIX/Windows File Sharing through
Multiprotocol Locking,” 2nd USENIX Windows
NT Symposium. August 3-4, 1998.
http://www.netapp.com/tech_library/3024.html

[CIFS]
http://msdn.microsoft.com/workshop/networking/c
ifs/default.asp

[Cthon] Sun Microsystems, Inc., "Sun Enterprise
Authentication Mechanism 1.0 Interoperability
Notes," 1999.
http://www.connectathon.org/seam1.0/

19

[EFF] Electronic Frontier Foundation, John
Gilmore (Editor) (1998). "Cracking DES: Secrets
of Encryption Research, Wiretap Politics & Chip
Design," O'Reilly & Associates, ISBN
1565925203.

[Eisler96] Eisler, M., Schemers, R., and
Srinivasan, R., "Security Mechanism
Independence in ONC RPC," Proceedings of the
Sixth Annual USENIX Security Symposium,
1996, pp. 51-65.

[Eisler00] Eisler, M. (2000), "LIPKEY - A Low
Infrastructure Public Key Mechanism Using
SPKM," a work in progress to be published as an
RFC by the Internet Engineering Task Force.

[Howard] Howard, J.H., Kazar, M.L., Menees,
S.G., Nichols, D.A., Satyanarayanan, M.,
Sidebotham, R.N., West, M.J., “Scale and
Performance in a Distributed File System,” ACM
Transactions on Computer Systems 6(1), February,
1988.

[Juszczak] Juszczak, C., “Improving the
Performance and Correctness of an NFS Server,”
Proceedings of the USENIX Winter 1989
Conference.

[Kazar] Kazar, M.L., Leverett, B., et.al, “Decorum
File System Architectural Overview,” Proceedings
of the USENIX Summer 1990 Conference.

[Jaspan] Jaspan, B., “GSS-API Security for ONC
RPC,” 1995 Proceedings of The Internet Society
Symposium on Network and Distributed System
Security, pp. 144-151.

[LaMacchia] LaMacchia, B. A., and Odlyzko, A.
M. (1991). "Computation of Discrete Logarithms
in Prime Fields, " Designs, Codes and
Cryptography," pp. 47-62.
http://www.farcaster.com/papers/crypto-
field/index.htm

[Macklem] Macklem, R., “Not Quite NFS, Soft
Cache Consistency for NFS,” Proceedings of the
USENIX Winter 1994 Conference.

[Martin] Martin, R. P., Culler, D. E., “NFS
Sensitivity to High Performance Networks,”
http://www.cs.rutgers.edu/~rmartin/papers/snfs.ps

[Microsoft99] Microsoft Corp., “Microsoft
Distributed File System.”
http://www.microsoft.com/ntserver/nts/downloads/
winfeatures/NTSDistrFile/AdminGuide.asp

[Microsoft00] Microsoft Corp., "Step-by-Step
Guide to Kerberos 5 (krb5 1.0) Interoperability,"
January 26, 2000.

http://www.microsoft.com/windows2000/library/pl
anning/security/kerbsteps.asp

[MIT] Massachusetts Institute of Technology
(1998). "Kerberos: The Network Authentication
Protocol." The Web site for downloading MIT's
implementation of Kerberos Version 5, including
implementations of RFC 1510 and RFC 1964.
http://web.mit.edu/kerberos/www/index.html

[Mogul] Mogul, J. C., “Recovery in Spritely NFS,”
DEC WRL Research Report 93/2, Digital
Equipment Corp. Western Research Lab.
http://www.research.digital.com/wrl/techreports/ab
stracts/93.2.html

[Pawlowski] Pawlowski, B. Juszczak, C.,
Staubach, P., Smith, C., Lebel, D., Hitz, D., “NFS
Version 3 Design and Implementation.”
Proceedings of the USENIX Summer 1994
Technical Conference.
http://www.netapp.com/ftp/NFSv3_Rev_3.pdf

[RFC1094] Sun Microsystems, Inc., “Network
Filesystem Specification,” RFC 1094, the NFS
Version 2 protocol specification.
http://www.ietf.org/rfc/rfc1094.txt

[RFC1510] Kohl, J., and Neuman, C. (1993). "The
Kerberos Network Authentication Service (V5),"
RFC 1510. http://www.ietf.org/rfc/rfc1510.txt

[RFC1813] Callaghan, B., Pawlowski, B. and
Staubach, P., “NFS Version 3 Protocol
Specification,” RFC 1813, June 1995.
http://www.ietf.org/rfc/rfc1813.txt

[RFC1831] Srinivasan, R., “RPC: Remote
Procedure Call Specification Version 2,” RFC
1831, August 1995.
http://www.ietf.org/rfc/rfc1831.txt

[RFC1832] Srinivasan, R., “XDR: External Data
Representation Standard,” RFC 1832, August
1995. http://www.ietf.org/rfc/rfc1831.txt

[RFC1964] Linn, J. (1996). "The Kerberos Version
5 GSS-API Mechanism," RFC 1964.
http://www.ietf.org/rfc/rfc1964.txt

[RFC2026] Bradner, S., “The Internet Standards
Process – Revision 3,” RFC 2026, October 1996.
http://www.ietf.org/rfc/rfc2026.txt

[RFC2054] Callaghan, B., “WebNFS Client
Specification,” RFC 2054, October 1996.
http://www.ietf.org/rfc/rfc2054.txt

[RFC2055] Callaghan, B., “WebNFS Server
Specification,” RFC 2054, October 1996.
http://www.ietf.org/rfc/rfc2055.txt

20

[RFC2203] Eisler, M., Chiu, A., Ling, L.,
“RPCSEC_GSS Protocol Specification,” RFC
2203, September 1997.
http://www.ietf.org/rfc/rfc2203.txt

[RFC2339] The Internet Society, Sun
Microsystems, Inc., “An Agreement Between the
Internet Society, the IETF, and Sun Microsystems,
Inc. in the matter of NFS V.4 Protocols,” RFC
2623, June 1999.
http://www.ietf.org/rfc/rfc2339.txt

[RFC2623] Eisler, M., “NFS Version 2 and
Version 3 Security Issues and the NFS Protocol’s
Use of RPCSEC_GSS and Kerberos V5,” RFC
2623, June 1999.
http://www.ietf.org/rfc/rfc2623.txt

[RFC2624] Shepler, S., “NFS Version 4 Design
Considerations,” RFC 2624, June 1999.
http://www.ietf.org/rfc/rfc2624.txt

[Robinson] Robinson, D., “The Advancement of
NFS Benchmarking: SFS 2.0,”
Proceedings of the 13th Systems Administration
Conference - LISA '99
http://www.usenix.org/events/lisa99/robinson.html

[Sandberg] Sandberg, R., Goldberg, D., Kleiman,
S., Walsh, D., Lyon, B., “Design and
Implementation of the Sun Network Filesystem,”
Proceedings USENIX Summer 1985.

[Shepler] Shepler, S., Beame, C., Callaghan, B.,
Eisler, M., Noveck, D., Robinson, D., Thurlow, R.,
"NFS Version 4 Protocol," a work in progress to
be published as an RFC by the Internet
Engineering Task Force, 2000.
http://www.nfsv4.org

[Taylor] Taylor, B., Goldberg, D. (1986). "Secure
Networking in the Sun Environment," Proceedings
of the 1986 Summer USENIX.

[Ts'o] Ts'o, T. (1997), "Microsoft 'Embraces and
Extends' Kerberos V5," ;login: - USENIX News.
http://www.usenix.org/publications/login/1997-
11/embraces.html

[Srinivasan] Srinivasan, V., Mogul, J. C., “Spritely
NFS: Implementation and Performance of Cache
Consistency Protocols,” DEC WRL Research
Report 89/5, Digital Equipment Corp. Western
Research Lab. Also in Proc. Of the Twelfth ACM
Symposium on Operating System Principals.
http://www.research.digital.com/wrl/techreports/ab
stracts/89.5.html

[UTF8] The Unicode Consortium,
http://www.unicode.org

