
Real Stateful TCP Packet Filtering in

IP Filter
Guido van Rooij <guido@gvr.org>,

Origin IT, P.O.Box 218,
5600 MD Eindhoven, The Netherlands

Abstract
IP Filter is an Open Source packet filtering en-
gine that is available for a number of operating
systems, including Solaris and FreeBSD, Open-
BSD and NetBSD.

IP Filter comes with so-called stateful packet
filtering. In the case of TCP, the state engine not
only inspects the presence of ACK flags, or
looks at source and destination ports, but it in-
cludes sequence numbers and window sizes in
its decision to pass or block packets. This
greatly reduces the window of opportunity for
malicious packets to be passed through the
packet filter, even in the case when source and
destination ports and addresses are known.

The original way of performing this in IP Filter
produced a number of problems. The main
problem being that IP Filter assumed, when it
detected packets traversing through it, that the
destination would also see the packets. In the
case of packet loss this is not always true. Fur-
thermore, it previously looked at window sizes
symmetrically: the window size was treated as a
relative upper bound for new data that was sent,
and the negative window size was treated as a
lower bound (for retransmissions). There is no
apparent reason for doing this, and it will be
proven to be invalid. Additionally, the window
size taken as the upper bound for new data was
the last window advertisement seen. In case of
retransmissions this meant a fall back in al-
lowed data which was also incorrect.

The new state engine does not have these prob-
lems. The main design criteria was to never as-
sume anything, but to only take information for
granted when it can be proven to be correct.
When implementing this design in IP Filter, it
turns out that some criteria must be relaxed in
order to be compatible with other code within IP
Filter. These consequences will be discussed.
Furthermore, some hints will be given on how

to improve the implementation of the state tim-
eouts.

The paper will conclude with experiences with
the state code and list future work on the state
code.

1. Introduction
In recent years, more and more networks with
sensitive or even business critical data on them
are being interconnected. Simultaneously,
hacker activity has grown tremendously because
of freely available hacker tools. In order to pro-
tect networks, so-called firewalls are deployed
that protect against hacker activities. One of the
ways to implement a firewall is to make use of
so-called packet filters.

TCP/IP
In order to understand the following of this ar-
ticle a small introduction to TCP/IP is neces-
sary. TCP is a protocol that runs on top of IP. IP
takes care of delivering packets. For the remain-
der of this article, it is relevant that each IP
packet contains two addresses: the address of
the source of the packet and the address of the
destination of the packet. TCP adds a reliable,
connection oriented service to IP. It makes sure
that there is a reliable data stream between
source and destination. TCP avoids duplication
of transmitted data and avoids delivering data
out of order. In order to be able to setup mul-
tiple connections between two hosts, TCP adds
so-called ports to IP addresses. These ports
identify the connection endpoints on the source
and destination. The combination of source port,
source address, destination port and destination
address are unique for every TCP connection.

TCP uses a three-way handshake to setup a con-
nection. The source sends a packet with a spe-
cial flag set called the SYN flag and with the
so-called sequence number field (or for short

seq field) set to some initial value. These se-
quence numbers are used to uniquely identify
each octet (the network lingo for 8 bits) of data
in the connection. Counting starts at the initial
sequence number. If the destination is willing to
accept the connection, it sends a packet back
with the SYN flag set as well. Furthermore an-
other flag, called the ACK flag, is set. When
the ACK flag is set, the value in the acknowl-
edgement (or ack) field is equal to the number
of the next unreceived octet. In this case the
ACK flag acknowledges the first packet which
only contains the SYN flag but has no payload
octets. To be able to acknowledge this packet
anyway, the SYN flag is also counted as one
octet of data. The third packet then acknowl-
edges the second packet by also having its ACK
flag set and with the ack field set to the ap-
propriate value.

There is an additional field in the TCP packet
that is relevant in this article: the window size.
The window size determines how much data a
host is willing to accept. It thus serves as a flow
control mechanism (no more than the window
size of data will be in transit over the network).
When a host wants to end the connection, an-
other three-way handshake takes place. The dif-
ference with the initial one is that in this case
not the SYN flag is used but the FIN flag. Simi-
lar to the SYN flag, the FIN flag also counts as
one octet of data.

It should be noted that this is a very short intro-
duction to TCP. The flags and fields relevant to
the understanding of this article are covered but
nothing more. In reality, the protocol has many
more features and extensions. In order to get a
more thorough understanding, the reader is re-
ferred to [RFC793] , [RS1] and [RS2].

Packet Filtering
Packet filtering has proved to be a handy tool to
put access controls to IP traffic. Packet filters
can be used to block IP packets based on certain
criteria such as the protocol used and various
protocol characteristics. In early packet filters,
filtering decisions were made based solely on
the packet that is currently inspected. Data like
the source and destination addresses and in
UDP and TCP cases the source and destination
ports could be used in the filtering decisions.
Even the well known ’established’ keyword,
was based on static information (it inspected the
presence of the ACK and RST flags in TCP re-
turn traffic [IOS12, access-list (extended)]).
Such filtering could be very well used to protect

against spoofing attacks where the attacker
would send packets that seem to originate from
systems on the inside of the packet filter.

In recent years, the underworld has produced
more and more tools exploiting the static nature
of this generation of packet filters. A simple
form of probing is to send packets with the
ACK flag set (further referred to as an ACK) to
a target host. This way one can determine if the
target host is listening on a port without easy
detection [UM, NMAP]. Denial of service tools
exist that are able to bypass static filters [BR].

In order to be able to withstand these newer
probes and attacks, filters must somehow keep
state information on what is flowing through the
filter. The filter can then check if an ACK actu-
ally belongs to a valid connection. Packet filters
that keep such state information are called dy-
namic or stateful packet filters. Apart from be-
ing able to block more unwanted traffic than
static filters, an important advantage of stateful
packet filters is that one does not need to explic-
itly permit return traffic thus simplifying access
list administration.

In some packet filtering engines, stateful packet
filtering for TCP and UDP traffic is imple-
mented in a very simple way: namely by storing
the source and destination addresses and ports
in a state table. While this is a lot safer than the
older ’established’ method where ACK’s are
always passed, this still is not as secure as can
be. Ideally we only want those packets to pass
the filtering engine that are absolutely necessary
for the correct functioning of the TCP session.
Such a way of filtering will at least reveal mali-
ciously inserted packets and might protect
against yet unknown vulnerabilities.

2. IP Filter’s stateful
packet filtering
IP Filter is a TCP/IP packet filtering engine that
runs on a several Unix platforms. It has been
used by the author for several years in a variety
of systems. It has a very rich set of features
from basic filtering to Network Address Trans-
lation in various forms and includes support for
transparent proxying. For a complete descrip-
tion of all features see [IPF].

Ideally, the packet filter has a policy of blocking
everything that is not specifically allowed. For
TCP sessions, there is a rich set of information
available on which to base the decision to block
or pass a packet. We already described methods

that look at ACK flags and source and destina-
tion ports. In IP Filter, also the ack and seq
fields are taken into account, further closing
down the window of opportunity for abusive
packets. In the remainder of the article the TCP
protocol is assumed for all packets and all filter-
ing.

Old stateful filtering description
Whenever a packet is allowed by the filter code
to pass through the filtering host, the filter code
allows for the creation of a state entry. New
packets arriving at the filtering host are first
matched against the state entry table. In case of
a match, the state entry is updated if necessary
and the packet is allowed through. First, the
source address, source port, destination address
and destination ports are matched. If a match is
found, a special piece of code is executed that
inspects if the ack and seq fields are valid for
the given state entry. This code is the core of the
TCP state engine. In Figure 1, a simplified

version of this particular code can be found; ex-
ception handling, e.g. packets not having the
ACK flag set, and some initializing code, not
relevant to the discussion below, are left out.

The code roughly works as follows: the pointer
is points to the state entry that matches the
source and destination addresses and ports. It
contains the state of the connection as seen from
the source of the packet that led to the creation
of the is state entry. Among others it contains
the last seen seq field from the source is_seq
and the last seen ack field from the source
is_ack. Both is_ack and is_seq are over-
loaded, however: if a packet is matched that
travels from the destination to the source,
is_seq is filled with the ack field of the
packet and is_ack with the seq field of the
packet. The state entry also contains the last
seen window values, both from the source
is_swin and the destination is_dwin.

 /*
 * Find difference between last checked packet and this packet.
 */
 seq = ntohl(tcp->th_seq);
 ack = ntohl(tcp->th_ack);
 source = (ip->ip_src.s_addr == is->is_src.s_addr);

 if (source) {
 seqskew = seq - is->is_seq;
 ackskew = (ack - 1) - is->is_ack;
 } else {
 ackskew = seq - is->is_ack;
 seqskew = (ack - 1) - is->is_seq;
 }

 /*
 * Make skew values absolute
 */
 if (seqskew < 0)
 seqskew = -seqskew;
 if (ackskew < 0)
 ackskew = -ackskew;

 /*
 * If the difference in sequence and ack numbers is within the
 * window size of the connection, store these values and match
 * the packet.
 */
 win = ntohs(tcp->th_win);
 if ((seqskew <= is->is_dwin) && (ackskew <= is->is_swin)) {
 /* packet matches the state entry */
 if (source) {
 is->is_seq = seq;
 is->is_ack = ack;
 if (win != 0)
 is->is_swin = win;
 } else {
 is->is_seq = ack;
 is->is_ack = seq;
 if (win != 0)

 is->is_dwin = win;
 }
 do statistics;
 set timeout values;
 permit packet to pass;
 }
 /* packet does not match the state entry */
 deny packet to pass;

Figure 1: Old state code implementation

When a packet comes in, the variables seq and
ack are set to the respective fields in the TCP
packet. Then two values are calculated: se-
qskew and ackskew. These represent the ab-
solute value of the difference of the value of the
seq respectively the ack fields in the packet with
is_seq respectively is_ack. When se-
qskew is smaller than or equal to the last ad-
vertised destination window and ackskew is
smaller than or equal to the last advertised
source window the packet is matched and the
state entry is updated accordingly.

3. Analysis of the old
model
This section will give 2 examples of situations
where the old state engine made some wrong
decisions. In the examples, some packet traces
will be shown. Packets will be shown in the fol-
lowing format, in the order they are sent:

A→B 0:1000 win 2000 ack 1000 N

This line identifies a packet that is sent from A
to B. The packet contains data starting at se-
quence number 0 up to but not including 1000.
The length of the data section is thus 1000. Fur-
thermore, the packet contains a window adver-
tisement of 2000 octets and it acknowledges all
data sent by B up to but not including sequence
number 1000. The number N at the end of the
line means that this is the N-th packet that the
filtering hosts sees. In case the ACK or WIN
values are not relevant for the example, they are
omitted. Finally, it is assumed that none of the
packets are fragmented.

Example 1
Suppose a connection is setup normally, and has
entered the state table. Suppose further that the
first packet below matches the state table and is
passed through:

From Content Nr
B→A win 2048 ack 0 1

A→B 0:1000 2

B→A win 1048 ack 1000 7

A→B 1000:2000 3

B→A win 2048 ack 2000 4

A→B 2000:3000 5

B→A win 2048 ack 3000 6

Looking at this trace, one sees a normal TCP
session where the first ACK sent by B is some-
how delayed and arrives at the filtering host af-
ter the fourth ACK.

The state table now looks as follows during the
above session (the state entry values shown are
those before the packet has been matched by the
state code):

state entry packet content code
nr is_seq is_dwin seq ack win seqskew
1 not relevant 0 2048 -
2 0 2048 0 0
3 0 2048 1000 1000
4 1000 2048 2000 2048 999
5 2000 2048 2000 0
6 2000 2048 3000 2048 999
7 3000 2048 1000 1048 2001

Now either host A can send some data to B or
host B can send a retransmit of packet 6:

A→B 3000:4000 8a

B→A win 2048 ack 3000 8b

These packets lead to the following state en-
tries:

8a 1000 1048 3000 2000
8b 1000 1048 3000 2048 1999

Because seqskew is greater than is_dwin,
both packet 8a and 8b will be blocked. The

connection can not proceed anymore: whenever
A will send a packet, it believes it can send the
data 3000:4000 and this will always be blocked.
Packets from B will always ack 3000 and thus
will also be blocked. This results in blocking
packets that are part of a valid connection. In
fact, the connection just hangs.

Example 2
Suppose that in an established TCP connection
the following packets are sent:

From Content Nr
A→B 0:1000 1

B→A win 4000 ack 1000 2

A→B 1000:2000 3

A→B 2000:3000 4

A→B 3000:4000 5

A→B 4000:5000 6

B→A win 2000 ack 5000 8

B→A win 4000 ack 5000 7

Suppose that all packets actually reach their
destination in the order sent, except for the sec-
ond and third ACK. The second ACK is delayed
somehow between host B and the filtering host.
Furthermore, both ACKs are dropped some-
where between the filtering host and A. Suppose
also that the first 2 packets are such that they
are passed through the filter.

The relevant fields in the state table look as fol-
lows during the above session (again, the state
entry values shown are those before the packet
has been matched by the state code):

state entry packet content code
nr is_seq is_dwin seq ack win seqskew
1 not relevant 0 -
2 0 1000 4000 999
3 1000 4000 1000 0
4 1000 4000 2000 1000
5 2000 4000 3000 1000
6 3000 4000 4000 1000
7 4000 4000 5000 4000 999
8 5000 4000 5000 2000 1

Since seqskew is smaller than is_dwin in
all cases, these packets will pass the filter.

Host B will only retransmit the ACK when:

1. It must send a window update

2. When it is piggy-backed on some data.

3. When it receives a retransmit.

4. When the TCP keep-alive timer goes of.

For the sake of the example we can assume that
cases 1 and 2 are not applicable. Host A how-
ever will find that the data packet in 3 is not yet
acknowledged. It will therefor retransmit it. The
retransmit occurs because the acknowledgement
did not arrive in time and thus host A will only
try to retransmit the first unacknowledged
packet. It is assumed here that host A complies
to section 3.1 of the proposed standard
[RFC2581].

This leads to the following packet:

A→B 1000:2000 9

and corresponding state table values:

9 5000 2000 1000 4000

And thus, because seqskew=4000 is greater
than is_dwin=2000, the retransmit gets
blocked unnecessarily. After a while, A will
give up retransmitting the packet and drop the
connection on his side.

Both examples show that the state engine is not
coping well with out of order packets and
packet loss. In order to fully understand the new
state filtering engine that will be described in
the next section, it is crucial to see why the old
state engine was invalid: when the filter engine
sees a packet, it adjusts its state administration
accordingly. However, one can not be sure that
the packet actually reaches its destination. Re-
ally, the only thing one can be sure of is that the
sender did send the packet (given the assump-
tion that a valid packet is considered to be origi-
nated from the sender and not spoofed)

4. Design of the new
model
The following points made up the design strat-
egy of the new code:

1. Never assume anything: the state adminis-
tration should only be based on facts.

2. The state filtering should take all kinds of
TCP behavior into account. This includes
retransmissions and window probing. In
fact every forwarded packet passes twice

through the filter code. The first pass is on
the input queue and the second pass on the
output queue. So every forwarded, outgo-
ing packet looks to IP Filter as a retrans-
mission!

3. Never block packets such that a TCP ses-
sion can hang.

4. Make the window of opportunity for
abuse as small as possible. Abuse is de-
fined here as sending malicious data that
will be accepted as valid data or sending
malicious ACK’s that will be accepted as
valid ACK’s.

5. Minimize the amount of blocked packets
that belong to valid sessions because they
will cause false alarms.

In general, when setting bounds on what
constitutes valid packets, it will be pos-
sible that valid packets will be blocked.
As an example: suppose that an ACK only
packet is somehow delayed in transmis-
sion and pops up when the real connection
has moved way forward. When this de-
layed ACK gets blocked, it will cause a
false alarm but the blocking will not have
any effect on the TCP session it belongs
to.

Whenever the filter sees a packet that it consid-
ers valid, it must assume that the sender sent the
packet. If a valid packet arrives at the filtering
system:

1. The filter clearly sees that some data is
transmitted.

2. The filter sees the window advertisement
done by the sender.

3. The filter can conclude that if the ACK
flag is set, and the value of it is S, the
sender has received all data up to at least
sequence number S.

The real challenge lies in the decision what con-
stitutes a valid packet. In order to determine the
validity, lower and upper bounds will be derived
both for the ack values in a packet and for the
data the packet contains. Note that it is assumed
that all packets within a certain TCP session are
routed through the system where the packet fil-
ter is installed.

Boundaries for valid data
Suppose host A sends a packet to host B con-
taining the data interval [s, s+n) (meaning that it
contains data starting with sequence number s
and having length n). Between A and B there is
a packet filtering system F that routes all pack-
ets sent between A and B.

The upper bound determines when data is al-
lowed to be sent:

last octet in packet ≤ maximum octet A is
allowed to send

This is equivalent to:

s + n ≤ maximum octet A may send + 1

≤ max
packets sent by B

seen by A

{ }ack + win

the right hand side meaning the maximum value
of the sum of the ack and win fields from pack-
ets that are sent by host B to host A that are ac-
tually received by A.

Thus,

s + n ≤ max
packets sent by B

seen by F

{ }ack + win (Ia)

because a packet received by host A must have
been seen by F.

There is an exception to (Ia): in TCP, when host
B advertises a zero window, host A will start
the so-called persist timer that will cause it to
reprobe the B’s window persistently until it is
non-zero. In doing so, A will send at least the
first unacknowledged octet of data to B. This is
the only accepted situation where data may be
sent out of advertised window boundaries
[RFC793, section 1.5].

On BSD systems, a window probing is always
done with a packet containing one octet of data
[GW, page 827]. This length was assumed for
other systems as well and up to date, no prob-
lems seem to arise. So the real upper bound is:

s + n ≤ max
packets sent by B

seen by F

{ }ack + max()win,1 (I)

This upper bound will prevent passing of data
the recipient did not intend to receive. A packet
that is blocked because of this boundary was
sent by the sender at a time that it knew that the
receiver would ignore it. In case the assumption
about window probes containing one octet of
data is wrong, the boundary can easily be
adapted by replacing the ’1’ by the appropriate
number of octets, or by contacting the vendor of
the code to ask him not to waste bandwidth and
use 1 octet window probes.

It is harder to find a suitable lower bound:
When host A sends some data, it will only send
unacknowledged data.

For short:

s ≥ max
packets sent by B

seen by A

{ }ack (i)

Looking at the derivation of the upper bound, it
follows that equation (I) is also valid as seen
from the senders point of view. Thus:

s + n ≤ max
packets sent by B

seen by A

{ }ack + max()win,1

⇒ max
packets sent by A

{ }s + n ≤

max
packets sent by B

seen by A

{ }ack +

max
packets sent by B

seen by A

{ }max()win,1 (ii)

and thus, combining (i) and (ii):

s ≥ max
packets sent by A

{ }s + n −

max
packets sent by B

seen by A

{ }max()win,1

≥ max
packets sent by A

seen by F

{ }s + n −

max
packets sent by B

seen by F

{ }max()win,1 (II)

The lower bound will prevent retransmission
from data that is known to be already received.
So if the receiver actually did send a packet
containing such data it was somehow delayed
during transit. Since the communication already
moved on (otherwise we would not even be able
to tell that the packet was an unnecessary re-
transmit) we can also be sure that the ack value
on the blocked packet will at least have been
duplicated (if not moved forward) in later pack-
ets from sender to receiver.

Boundaries for valid Acknowl-
edgements
Packets cannot contain an ack value for data
that was not sent. This implicates that we have a
clear upper bound for the ack value sent: An
ACK from host A, with ack value ’a,’ can never
acknowledge data that was not received by A.

Thus:

a ≤ max
packets sent by B

seen by A

{ }s + n

≤ max
packets sent by B

seen by F

{ }s + n (III)

This upper bound will prevent sending of
ACK’s of data that could not have been re-
ceived. A packet that is blocked because of this
bound is known to be invalid.

A lower bound for the ack value is much harder.
One might say that the last received ack value is
a lower bound as ack values tend to move for-
ward. If however, two packets both containing
valid data are received out of order by the filter,
then the last one received will be blocked. First
of all, this is a false alarm and secondly, the
sender will have to do a retransmission if the
blocked packet contained valid data.

We might relax the above rule by saying:

a ≥ max
packet sent by A

seen by F

{ }ack or

packet contains valid data (according to
(i) and (ii)

But also in this case, packets might get blocked
unnecessarily when dataless ACK’s are re-
ceived out of order. Furthermore, the presence
of valid data suppresses checking the ack value
at all, which is not necessary.

Instead, a different approach was chosen. Cur-
rently, the following fixed boundary is chosen:

a ≥ max
packets sent by B

seen by F

{ }s + n −

MAXACKWINDOW (IV)

In natural language: An ACK is allowed if it
acknowledges data from host B that is not less
than MAXACKWINDOW octets from the last octet
of data seen by the filter. This last octet of data
seen by the filter is of course larger than the last
octet of data seen by host B, the sender of the
ACK. However, MAXACKWINDOW is slightly
larger than the maximum possible value of the
TCP window field (66000) and thus it can be
guaranteed that no valid ACK will ever get
blocked. This boundary seems like a cheap deal
after all the trouble that went into the sequence
number boundaries. The observation is that an
ACK of data that is already received will be ig-
nored by the receiver of the ACK. Thus the win-
dow in which ACK’s of received data are al-
lowed can be made very large. The larger the
window, the smaller the chance of a delayed
ACK being blocked.

5. Implementation
Data structures
In order to implement checking of the derived
boundaries, the following data structures are
used:

 struct tcpstate {
 u_short ts_sport;
 u_short ts_dport;
 tcpdata_t ts_data[2];
 u_char ts_state[2];
 } tcpstate_t;

 struct tcpdata {
 u_32_t td_end;
 u_32_t td_maxend;
 u_short td_maxwin;
 } tcpdata_t;

The meaning of the various fields is as follows:

In struct tcpstate:

ts_sport source port

ts_dport destination port

ts_data[0] source struct tcpdata

ts_data[1] destination struct tcp-
data

ts_state[0] source state (used for state
timing)

ts_state[1] destination state (used for
state timing)

Source and destination are defined by the packet
that leads to the new state entry.

Struct tcpdata contains:

td_end maximum value of seq + len
(boundaries II, III and IV)

td_maxend maximum value of ack +
max(win, 1) (boundary I)

td_maxwin the maximum window seen
(boundary II)

Initializations
The above boundaries are valid in the middle of
connections, but special treatment should be
given for initializations when a packet leads to
creation of a new state entry.

First the normal case is examined: the sender
sends a SYN packet to initiate a connection.
The question is how should the state entry be
initialized such that following packets are able
to pass. The possibilities for the next packet in
this session are retransmission of the SYN and
the receiver sending a SYN/ACK.

Both packets will be matched against bound-
aries I-IV.

1. Retransmission of the SYN

When the initialization of the state entry is
done as follows:

 ts_data[0].td_end = SEQ + 1
 ts_data[0].td_maxend = SEQ + 1
 ts_data[1].td_end = 0
 ts_data[1].td_maxend = 0
 ts_data[1].td_maxwin = 1
 ts_data[0].td_maxwin = max(WIN,1)

Here SEQ and WIN are the values of the seq
and win fields in the SYN packet. Note that
ts_data[1].td_end and
ts_data[1].td_maxend are not backed
by actual data in the packet and have to be
reinitialized once ’real’ data is available.

Then clearly, for the retransmitted packet:

s+n = SEQ + 1

s = SEQ

s+n ≤ ts_data[0].td_maxend (I)

s ≥ ts_data[0].td_end -

ts_data[1].td_maxwin (II)

where s and n are defined as in section 4.

Since the ACK flag is not set in the retransmis-
sion, just assuming that the ACK flag was set
and setting the ack value to 0 will result in:

a = 0

a ≤ ts_data[1].td_end (III)

a ≥ ts_data[1].td_end -
MAXACKWINDOW (IV)

Handling the absence of ACK flags in this way
allows for an easier implementation since this
exception is effectively eliminated.

2. Receiver sends a SYN/ACK

In this case, the falsely initialized fields can be
set in the state entry:

ts_data[1].td_end = SEQ + 1
ts_data[1].td_maxend = SEQ + 1

Here SEQ is the value of the seq field in the
SYN/ACK packet.

In this case,

s+n = SEQ + 1

s = SEQ

a = ACK

Clearly:

s+n ≤ ts_data[1].td_maxend (I)

s ≥ ts_data[1].td_end -
ts_data[0].td_maxwin (II)

the latter because ts_data[0].td_maxwin
≥ 1

and:

a ≤ ts_data[0].td_maxend (III)

a ≥ ts_data[0].td_end -
MAXACKWINDOW (IV)

because the ack field of this packet acknowl-
edges SEQ+1 from the initial SYN packet.

The above analysis is correct for connections
that enter the state table when being setup.
However, IP Filter leaves the possibility for
packets from the middle of a connection to lead
to an entry in the state table. This can be handy
when the system on which IP filter runs is re-
booted and existing sessions need to be pre-
served. The above analysis is no longer correct
in such a case. The reason is that the above sce-
nario needs the history of the connection to be
able to do its job. There are a number of ways to
work around this lack of history. The first is to
initialize the state variables such that the bound-
aries thus set will always include the boundaries
that would have been set in case the history was
known.

Another way of dealing with this is that the state
code just pretends that it knows the history.
When a packet comes in that would be blocked
given the current boundaries but that would not
have been blocked with the ’maximal’ bound-
aries in the previous paragraph, then the current
boundaries are stretched such that it would have
just passed the packet. This scenario will make
the state variables gently converge towards the
values that they would have had in case the
whole history was known. The advantage of this
method is that extending the window is an ex-
plicit action that can be logged.

Neither of these methods have been imple-
mented yet.

Actual Implementation

In this section, the actual implementation is
given in heavily annotated form. First the ini-
tialization part (which is done when a packet
leads to a state entry:

 is->is_tcp.ts_data[0].td_end = ntohl(tcp->th_seq) + ip->ip_len -
 fin->fin_hlen - (tcp->th_off << 2) +
 ((tcp->th_flags & TH_SYN) ? 1 : 0) +
 ((tcp->th_flags & TH_FIN) ? 1 : 0);

The right hand side is an ugly way of specifying the TCP payload length of the
packet. This is somewhat different from the initialization mentioned earlier. It is a
generalization thereof that will allow the state engine to work in the T/TCP case
[RFC1644, RS2].

 is->is_tcp.ts_data[0].td_maxend = is->is_tcp.ts_data[0].td_end;
 is->is_tcp.ts_data[0].td_end + 1;
 is->is_tcp.ts_data[1].td_end = 0;
 is->is_tcp.ts_data[1].td_maxend = 0;
 is->is_tcp.ts_data[1].td_maxwin = 1;
 is->is_tcp.ts_data[0].td_maxwin = ntohs(tcp->th_win);
 if (is->is_tcp.ts_data[0].td_maxwin == 0)
 is->is_tcp.ts_data[0].td_maxwin = 1;

These are directly taken from the earlier paragraph on initializations.

Figure 2: New state code initialization

The state matching code looks as follows:

 source = (ip->ip_src.s_addr == is->is_src.s_addr);
 fdata = &is->is_tcp.ts_data[!source];
 tdata = &is->is_tcp.ts_data[source];

By setting fdata and tdata the code below can be the same, regardless of the di-
rection of the packet. fdata represents the state variables for the sender of the
packet that is investigated and tdata represents its receiver.

 seq = ntohl(tcp->th_seq);
 ack = ntohl(tcp->th_ack);
 win = ntohs(tcp->th_win);
 end = seq + ip->ip_len - fin->fin_hlen - (tcp->th_off << 2) +
 ((tcp->th_flags & TH_SYN) ? 1 : 0) +
 ((tcp->th_flags & TH_FIN) ? 1 : 0);

Again the length of the payload of the TCP packet is determined and added to seq.

 if (fdata->td_end == 0) {
 /*
 * Must be a (outgoing) SYN-ACK in reply to a SYN.
 */
 fdata->td_end = end;
 fdata->td_maxwin = 1;
 fdata->td_maxend = end + 1;
 }

When td_end equals 0, we assume that we have to do the initialization described in
’Initializations: 2. Receiver sends a SYN/ACK’.

 if (!(tcp->th_flags & TH_ACK)) { /* Pretend an ack was sent */
 ack = tdata->td_end;

In case the packet does not have its ACK flag set, just pretend it was set by setting
ack such that it will match the ack boundaries. Also set its window value to 1

 } else if (((tcp->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) &&

 (ack == 0)) {
 /* gross hack to get around certain broken tcp stacks */
 ack = tdata->td_end;
 }

The code above is necessary because there seem to be TCP implementations that set
the ACK flag in RST packets but always leave the value of the ack field 0. In such a
case, pretend the ACK is valid.

 if (seq == end)
 seq = end = fdata->td_end;

In case the packet contains no data at all, assume it is valid and only look at the ack
value below. Passing this packet when the ack field is valid poses absolutely no
threat. This code is meant to prevent false (or harmless) blocked packets.

 maxwin = tdata->td_maxwin;
 ackskew = tdata->td_end - ack;

 if ((SEQ_GE(fdata->td_maxend, end)) &&
 (SEQ_GE(seq, fdata->td_end - maxwin)) &&
 /* XXX what about big packets */
#define MAXACKWINDOW 66000
 (ackskew >= -MAXACKWINDOW) &&
 (ackskew <= MAXACKWINDOW)) {

SEQ_GE and later SEQ_GT implement sequence number comparison with modular
arithmetic (see also [RFC793, section 3.3]

 /* if ackskew < 0 then this should be due to fragmented
 * packets. There is no way to know the length of the
 * total packet in advance.
 * We do know the total length from the fragment cache though.
 * Note however that there might be more sessions with
 * exactly the same source and destination parameters in the
 * state cache (and source and destination is the only stuff
 * that is saved in the fragment cache). Note further that
 * some TCP connections in the state cache are hashed with
 * sport and dport as well which makes it not worthwhile to
 * look for them.
 * Thus, when ackskew is negative but still seems to belong
 * to this session, we bump up the destinations end value.
 */

The comment above explains why boundary (III) cannot be used.

 if (ackskew < 0)
 tdata->td_end = ack;

This is necessary to ’synchronize’ td_end when indeed fragments were passed and
the total length is unknown

 /* update max window seen */
 if (fdata->td_maxwin < win)
 fdata->td_maxwin = win;
 if (SEQ_GT(end, fdata->td_end))
 fdata->td_end = end;
 if (SEQ_GE(ack + win, tdata->td_maxend)) {
 tdata->td_maxend = ack + win;
 if (win == 0)
 tdata->td_maxend++;
 }

This is the update of the relevant state variables with the information from the in-
spected packet.

 ret = 1;
 } else {
 ret = 0;
 }
 return(ret);

Figure 3: New state code implementation

The largest compromise that had to be made
when implementing the new design was that
boundary (III) cannot be checked. IP Filter does
not fully reassemble fragmented packets before
they are passed (this is supposed to be done by
the final destination [RFC1812, section 5.2.1.1]
anyway). It does use a limited fragment cache
but it can not always give back the total length
from packets of which it is known that all frag-
ments have been forwarded by IP Filter. This is
noticed by the state engine code in that packets
might arrive that acknowledge data that seems
not to have been sent. In case this is detected
and the acknowledgement is within MAXACK-
WINDOW from what was perceived as the last
octet sent, it is assumed the ack value is valid
and it acknowledges data that was sent.

6. Testing
Testing was first done on a system that did not
route packets but that sniffed a network and col-
lected state information from all sniffed packets.
IP Filter had to be modified slightly to do this.
Whenever a packet was seen that would have
been blocked by the state engine, it was logged
on this machine.

Such a setup allows for testing the state engine
without actually disrupting network traffic be-
cause no real filtering is performed. Thus it is
possible to test on operational networks which
saves the trouble of producing test network
traffic.

On the actual (operational) network on which
the tests were done, an enormous amount and
variety of connections could be tested as the
network is used to monitor and administer ma-
chines using connectivity from high speed low
latency links to low bandwidth high latency
links.

7. Timeouts
In order not to fill up kernel memory with state
entries it is necessary to add a timeout to each

entry. When the timeout expires, the entry is
removed. Of course the value of the timeout can
be adjusted according to the (TCP) state the
connection is in.

When testing the above stateful filtering design,
it turned out that in a number of cases, packets
would get blocked because the state entry did
time out where it should not have. This was par-
ticularly true in the case of TCP half-closed
connections as often seen with browsers. It
would be easy to set a large timeout on every
state entry but on the other hand, state entries
should be removed as quickly as possible to
avoid unnecessary memory use. This section
contains some thoughts on how to reimplement
TCP state entry timeouts.

The state timeout code in IP Filter has a state
machine for each half of a connection. This
state machine more or less, uses the same states
as the TCP stack does [RFC793, section 3.2].

Having two state machines is a nice idea be-
cause it gives the possibility to look at the status
of each half of the connection in the state table.
The timeouts however are not always set cor-
rectly. As an example: when one half of the
connection is in the ESTABLISHED state while
the other half has sent a FIN, the resulting tim-
eout should be the same as if the connection
would have been fully established since one
side of the connection might still be sending
data.

Furthermore, when one side of a connection
sends a FIN and the other side responds with a
FIN/ACK, a constant timeout is used for the so-
called 2MSL period. Over time, this timeout has
been increased to prevent blocking of retrans-
mits. This has the unwanted side effect that for
those connections where the connection ended
okay, the state entries linger around unnecessar-
ily long. Especially in HTTP intensive setups,
this poses a heavy burden on used memory. As
a solution to this problem, a variable timeout
should be used. When both ends of a connection
have sent a FIN, a relatively small timeout

should be set. This timeout should be such that a
possible first retransmit of a FIN will be done
within the timeout period. An exponential back-
off should then be used to increase the timeout
value upon reception of retransmits of one of
the FIN packets. Both [RFC1122, section
4.2.3.1] and [RFC2581] specify how to imple-
ment retransmission. However given that there
are quite a number of incorrect implementations
of SYN retransmissions [RS2, section 14.7] and
that SYN retransmissions should use the same
algorithm as data segments, further study is
probably necessary to determine optimal values
for the initial value of the timeout as well as for
the actual exponential backoff implementation.

8. Conclusions
The new state code has been in operation by
quite a number of IP Filter users and seems to
work as expected. The most remarkable block
of a packet was seen in a HTTP session from
the author’s home system running FreeBSD
(host A) to a Windows NT system (host B). The
blocking seemed to point to a bug in the filter-
ing code. Closer examination revealed that this
was not true. The relevant packets of the ses-
sion are depicted below (in tcpdump [TCP] for-
mat with line numbers). The last packet was
blocked by IP Filter.

 1 B.80 > A.1102: . 153993:155453
 2 B.80 > A.1102: . 155453:156913
 3 A.1102 > B.80: . ack 156913 win 8760
 4 B.80 > A.1102: . 156913:158373
 5 A.1102 > B.80: . ack 158373 win 8760
 6 B.80 > A.1102: . 161293:162753
 7 A.1102 > B.80: . ack 158373 win 8760
 8 B.80 > A.1102: . 162753:164213
 9 A.1102 > B.80: . ack 158373 win 8760
10 B.80 > A.1102: . 164213:165673
11 A.1102 > B.80: . ack 158373 win 8760
12 B.80 > A.1102: . 165673:167133
13 A.1102 > B.80: . ack 158373 win 8760
14 B.80 > A.1102: . 158373:159833
15 B.80 > A.1102: . 167133:168593

Looking carefully at these packets, we see that
packet no 14 seems to be a retransmission of a
packet that seems to be lost between packet no 4
and 6. Looking carefully at packet 15, its se-
quence number and the advertised window of
host A (packet 13), it turns out that host A was
sending out of window data. It is unclear if this
violates the TCP protocol specification
[RFC793], but at least it seems like a waste of
bandwidth. This situation does not seem to oc-
cur often, though it was at least reported by one
other IP Filter user [CS]. In fact the old state
code would have completely blocked the con-
nection when too much data was sent out of the

advertised window and an earlier packet was
lost.

Other blocked packets seen are mostly due to
timeouts of state entries and are thus unrelated
to the state code itself. Packets that appear lost
and were already retransmitted but that are actu-
ally not lost might sometimes also result in
blocks.

Some minor issues were discovered in the
implementation of the new code. The most no-
table one being an invalid initialization causing
retransmits of SYN packets not to match the
state entry.

9. Future work
In order to complete the state code, at least one
additional feature should be added. Currently,
for window advertisements, only the TCP win-
dow field is taken into account. For connections
involving the TCP window scale option
[RFC1323], the results are thus incorrect. The
old IP Filter state engine had the same problem
so the new state engine did not make things
worse in this respect. Still, this omission needs
to be corrected in a future version. When this is
done, also the timestamp option is to be taken
into account so that the state engine will be able
to handle wrapped sequence numbers within
high speed connections.

Of course, sessions that enter the state table,
when they are already established, should be
handled better. This was already discussed in
Section 5.

Furthermore, the workarounds in the imple-
mentation for dealing with fragments should be
eliminated. This has to be done in the fragment
handling. What is needed is that the state engine
is called when it is known that all fragments of
a fragmented packet are forwarded by the IP
Filter host. In that case, the state engine must
also be passed the total length of the packet.

Another useful addition would be to enhance IP
Filter such that when a packet comes in that is
not yet in the state table, it can verify that the
packet actually belongs to an existing TCP con-
nection.

An idea to achieve this, as used by Checkpoint’s
Firewall-1, is when a packet comes in with the
ACK flag set but not the SYN flag, to dynami-
cally probe the receiver of the packet to deter-
mine if it is part of a valid connection. This can
be done in the following way:

Suppose a packet comes in with the ACK flag
set but not the SYN flag, that would be blocked.
In case a rule exists that would have led to a
state entry that would have allowed this packet
to pass, the filter strips the payload from the
packet, changes the seq field and forwards the
packet. If the packet did not belong to a valid
session, the receiver will return an RST. When
the filter sees the RST it will drop the RST (thus
not giving out any information about the re-
ceiver). But if it did belong to a valid session,
the receiver will reply with an ACK. This ACK
then leads to a state entry after which the con-
nection can go on.

Last but not least, facilities should be added to
the IP Filter TCP state code such that it can
function in a redundant (high availability) setup.
Passing all state changes from one IP Filter host
to another one results in too much traffic so
something smarter must be designed. Passing
the static part of state entries (struct
tcpstate) on state additions and removals
might be a valid option. Once the active IP Fil-
ter setup fails and an inactive one takes over it
knows the port numbers and addresses of valid
existing sessions. The method described in Sec-
tion 5 can then be used to determine on the fly
suitable values for the struct tcpdata
entries.

Availability
The new state code is available within the IP
Filter distribution since version 3.3.0. The dis-
tribution can be obtained via the IP Filter
Homepage [IPF].

Acknowledgements
The author would like to thank Darren Reed for
his IP Filter package that has proven to be one
of the most flexible filter solutions available.
Thanks go also to the reviewers for their valu-
able comments.

References
[BR] brkill, Basement Research,
http://deep.ee.siue.edu/br/brkill/brkill.html

[CS] Constantine Sapuntzakis, personal com-
munication, October 1999.

[GW] Gary R. Wright and W. Richard Stevens,
"TCP/IP Illustrated, Volume 2: The Implemen-
tation", Addison-Wesley, 1995.

[IOS12] Cisco IOS Release 12.0, "IP Services
Commands".
http://www.cisco.com/univercd/cc/td/doc/
product/software/ios120/12cgcr/
np1_r/1rprt2/1rip.htm

[IPF] IP Filter Homepage,
http://coombs.anu.edu.au/~avalon

[NMAP] nmap, Fyodor,
 http://www.insecure.org/nmap/

[RFC793] J. Postel, "Transmission Control Pro-
tocol", STD 7, RFC 793, September 1981.
http://www.ietf.org/rfc/rfc0793.txt

[RFC1122] R.T. Braden, "Requirements Inter-
net hosts - communication layers", STD 3,
RFC1122, October 1989.
http://www.ietf.org/rfc/rfc1812.txt

[RFC1323] V. Jacobson, R. Braden, D. Borman,
"TCP Extensions for High Performance",
RFC1323,
http://www.ietf.org/rfc/rfc1323.txt

[RFC1644] R. Braden, "TCP Extensions for
Transactions Functional Specification", July
1994.
http://www.ietf.org/rfc/rfc1644.txt

[RFC1812] F. Baker, "Requirements for IP
Version 4 Routers", RFC1812, June 1995.
http://www.ietf.org/rfc/rfc1812.txt

[RFC2581] M. Allman, V. Paxson, W. Stevens,
"TCP Congestion Control", RFC2581, April
1999.
http://www.ietf.org/rfc/rfc2581.txt

[RS1] W. Richard Stevens, "TCP/IP Illustrated,
Volume 1: The Protocols", Addison-Wesley,
1994.

[RS2] W. Richard Stevens, "TCP/IP Illustrated,
Volume 3: TCP for Transactions, ...", Addison-
Wesley, 1996.

[TCP] tcpdump Homepage,
http://www.tcpdump.org/

[UM] Uriel Maimon, "Port Scanning without
the SYN flag", Phrack 49, November 1996,
http://www.2600.com/phrack/p49-15.html

