1 Introduction

The Internet facilitates myriad services for distributing information. One of the
more popular services is the distribution of software, exemplified by CNET, Tu-
cows, Freeware, and many others. The traditional approach for distributing soft-
ware (as well as other files), is to set up a server that gives read-only access to a
collection of files by means of protocols such as FTP or HTTP. Although this ap-
proach in general works reasonably well, it potentially introduces two important,
related problems.

First, because there is only a single access point the availability of the service is
determined completely by that of the server. Second, this server can easily become
a performance bottleneck (which, in turn, affects the availability). Not only may
the server need to provide simultaneous access to many users, it should also be
capable of providing high throughput. Performance may further be affected by the
network connection between client and server. Especially when dealing with long-
haul connections, there are restrictions on available bandwidth that fully determine
the time to access and download files.

The traditional solution is to simply replicate the collection of files to a mirror
site. Mirroring can dramatically improve availability and performance, especially
if brute-force techniques are used to guarantee high throughput to nearby clients.
For example, recently NLUUG’s software archive (forming a mirror for many large
collections of files and documents) has been linked to a high-speed national net-
work through a 1-Gbit interface. This connection now provides excellent access to
local (i.e., national) clients.

Mirroring introduces a consistency problem: a file copy needs to be synchro-
nized with its master copy or otherwise a client may be downloading an old ver-
sion of the file instead of the most recent one. Consistency problems can be partly
solved using tools such as rsync, but leaves other issues open. For example, in
many cases it is unclear whether it actually makes sense to copy all files to a mirror
site. If it is required to efficiently use local resources, such as disk space, it may
be better to mirror only the popular files. Likewise, deciding on when and how to
synchronize copies reduces to being an educated guess if no information on usage
and access patterns is available. Finally, mirroring is not transparent to the user.
When looking for a file, the user will have to select the mirror site to go to.

Mirroring, and other alternative solutions such as adopted by Content Delivery
Networks and peer-to-peer systems, still leave a number of important issues open.
For example, a file-distribution system should be able to provide security, simple
facilities for uploading files, dynamic replication to where files are mostly needed
(e.g., to handle flash crowds), different protocols for maintaining consistency be-
tween file copies, and should be able to span multiple administrative organizations.

The Globe Distribution Network (GDN) is set up to partially solve these prob-
lems [2]. It is developed as an application of the Globe wide-area distributed sys-
tem [31]. GDN consists of a collection of servers that store packages of files. It
has the following important properties:



Clients are transparently directed to the nearest available copy of a package
It can be used with existing client-side software (i.e., Web browsers)

It has facilities for preventing illegal content distribution

A package can be replicated and migrated in a package-specific way

GDN is currently running in an experimental setup worldwide with servers in The
Netherlands, France, United States, Brazil, and Israel. Besides software distribu-
tion, it is also hosting Web content. The source codes and binaries (mostly Java
bytecodes) for various platforms are freely available (of course, through GDN) and
can be accessed at http://www.cs.vu.nl/globe.

In this paper we provide an overview of GDN. Our main contribution is that we
provide a description from the perspective of someone wanting to set up and main-
tain a GDN site. This description excludes many specific details on the GDN in-
ternals, but instead opens the road for participation in GDN. We start by discussing
related work in Section 2, followed by an architectural overview in Section 3. A
description of the components that comprise a GDN site is given in Section 4. Se-
curity is described in Section 5. We provide an outlook and conclude in Section 6.

2 Related Work

There are a number of systems that address replication of files. In the following,
we briefly consider distributed file systems, content delivery networks, and peer-
to-peer storage systems.

2.1 Distributed File Systems

Distributed file systems have traditionally been weak in providing sophisticated
support for file distribution and replication, mainly because they have not been de-
signed to operate across wide-area systems. A notable exception is AFS, which
has gradually evolved to a wide-area system in which scale is obtained through
client-side file caching in combination with callbacks [27]. A similar approach has
recently been adopted for NFS, by which its traditional stateless-server design is
abandoned [18, 26]. In these approaches, when a file is opened it is transferred to
the client where all operations can now be performed locally. Updates are prop-
agated back to the servers when the file is closed. Server replication is primarily
supported only for increasing availability. In all cases, the same strong consistency
model is implemented for all files; there is no differentiation between files.
Weaker consistency models have also been adopted. For example, in Ficus,
each workstation effectively acts as a server and potential replica host for the files
that a client wants to access [17]. Updates are propagated in a lazy fashion using
anti-entropy [7], but because they can be initiated concurrently at different sites,
there is a need for reconciliation when write-write conflicts occur. Likewise, Coda
supports disconnected operation allowing a client to continue updating its local



copy of a file, without any guarantees that another client may also be perform-
ing updates [11]. More important is that in these examples replication of files is
again hard-coded into the system. At best, they allow a callback to user-provided
component for conflict resolution.

2.2 Content Delivery Networks

More recently, content distribution networks (CDNs) are providing services that
adopt a more flexible approach to dynamically distributing and replicating Web
content. In RaDaR, files are dynamically replicated and migrated between a col-
lection of servers depending on the access statistics of clients [22]. Akamai uses a
proprietary algorithm to decide where to place replicas, but uses a relatively simple
cache-invalidation scheme to refresh copies on demand [13].

An important contribution of CDNSs is that they address placement issues. Un-
like many other distributed storage systems, CDNs attempt to place replicas of a
Web document only where it is really needed. Various studies on the optimal place-
ment of Web content have been conducted (see, e.g., [20]). One of the issues that
makes optimal placement such a difficult problem is that it is not trivial to select
a performance metric that leads to significant differentiation between placement
decisions [15]. In other words, it is hard to evaluate what makes one placement
strategy better than the other. It may be that combining geographical distance at
the level of continents with distance expressed as hop counts between autonomous
systems at lower levels is currently the best we can do [21].

Current CDNs and related Web replication schemes generally use a single pro-
tocol for keeping copies consistent. Only relatively few approaches have been
studied in which the protocol itself is adaptive, for example, by allowing to dy-
namically switch between pushing and pulling updates [8, 32]. Our own studies
regarding replicating Web content indicate that adaptive protocols may help to si-
multaneously optimize bandwidth usage and reduce client-perceived latency [19].
It is yet unclear whether such adaptivity is also necessary for the distribution of
software packages.

2.3 Peer-to-Peer Systems

An important emerging area of related research is in file-sharing peer-to-peer net-
works. In the novel approaches, these networks consist of two separate layers.
The lowest layer consists of (probabilistic) routing and searching protocols, which
essentially allow a client to route a request based on a unique key from a large
number space. This approach to routing is adopted, for example, in Tapestry [33],
Chord [28], and Pastry [24].

Storage facilities are provided by a separate layer. Invariably, a client is offered
a massively scalable system that supports immutable files [6, 23, 25]. Updates are
handled through versioning. Security is often provided through data encryption
and special measures to protect against denial of service attacks. However, none of



these systems offers a means to deal with illegal content distribution, which is one
of the goals of GDN.

Another potential shortcoming of the current peer-to-peer networks that needs
further investigation, is the way that network proximity is taken into account. Some
systems, such as Freenet [4] simply ignore network proximity when routing re-
quests. Other systems give higher priority to nodes that are close by in terms of
round-trip delays. However, it is unclear whether this metric is actually sufficient
to achieve efficiency in terms of network-resource usage.

3 GDN Architecture

Let us now concentrate on the overall organization of GDN. We first consider its
main components that together form the core of the distribution network. GDN
by itself is constructed as an independent distributed system built on top of the
Internet’s transport layer. To integrate it into the Web, thus allowing existing clients
to interact with GDN, special measures need to be taken. These measures are
discussed separately.

3.1 GDN Core Network

GDN has been constructed as an application of Globe, a wide-area distributed sys-
tem developed at the Vrije Universiteit Amsterdam [31]. One of the key concepts
underlying Globe is that shared data is encapsulated by distributed objects. Un-
like most other object models, objects in Globe can be physically distributed and
replicated across multiple machines. Important is that each object not only encap-
sulates its state and the implementation of operations on that state, but also that
it implements its own distribution strategy. In other words, each object separately
implements a strategy that governs how its state is partitioned, replicated, and mi-
grated between hosts. Likewise, each object carries it own implementation for
security, persistence, and so on.

Each Globe system is normally set up as a collection of object servers for
hosting distributed objects. GDN is no exception and also consists of a number of
Globe object servers (GOSs). Conceptually, an instance of GDN consists of two
concentric layers, as shown in Figure 1. The inner layer is formed by a collection
of sites each running Globe servers and Globe-enabled clients. The outer layer
consists of standard Internet and Web clients that access GDN services by means
of gateways. In this section, we consider only the inner layer.

The Globe object servers comprising GDN collaborate in storing, distributing,
and replicating files. Files that are to be stored in GDN are encapsulated in objects
that are physically distributed across multiple Globe sites. We refer to these objects
as (distributed) package objects. A package object typically represents a version
of a software package (also known as a revision [5]), including its variants for dif-
ferent file formats. Different versions of the same software package are contained
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Figure 1: Concentric layering of GDN.

in separate package objects. In this way, we obtain the flexibility to adjust the dis-
tribution of a software package to its popularity. In this way, old versions may be
stored at only a few places, whereas the most recent version of a package is repli-
cated across many sites, for example, in anticipation of flash crowds, or simply for
high availability and performance. Again, note that GDN allows the distribution of
its package objects to be tuned per object.

A package object consists of a number of local representatives, one on each
server on which the object is hosted. A local representative thus contains the files
that comprise a software package. A client, however, need not know what a local
representative actually contains. Such details are hidden behind an object’s inter-
faces, which are the only thing a client gets to see. A local representative, in turn,
is implemented as a local (i.e., nondistributed) object. Such a local object is hosted
by an object server similar to the way that local objects in systems such as CORBA
and Legion are hosted. We return to these issues below.

Each package object has an associated human-friendly global name similar to a
UNIX pathname. An example of such a name is /nl/vu/cs/globe/proj/lhome. Names
in GDN are globally defined. In other words, all package names together form a
worldwide global name space. To access a package in GDN, a client will pass a
name for the package to the GDN naming service, which will eventually return the
address of on object server hosting a replica of the package. The naming service
aims to return the address of an object server that is close to the client. To this end,
we have split the naming service into two parts.

The first part supports human-friendly names that are bound to identifiers known



as object handles. An object handle is a stable and location-independent reference
to package object, comparable to a UUID as used in DCE and now available on
many (distributed) computer systems such as Linux. As we explain in detail later,
maintaining name-to-object bindings is implemented in GDN by means of DNS.

The second part of the naming service is formed by a separate and specially de-
veloped Globe location service, which is responsible for maintaining the bindings
between an object handle and the current addresses of the replicas of a package.
By separating human-friendly names from addresses, we have been able to de-
velop a worldwide scalable service that allows efficient lookups of addresses even
if addresses change regularly [3].

The location service returns a contact address describing exactly where and
how the requested package object can be contacted. A contact address usually con-
tains the address of an object server along with a server-specific local-representative
identifier. Also, the contact address contains an implementation identifier, point-
ing, for example, to a Java jar file that the client should load in order to set up a
connection with the object. In a sense, the GDN contact addresses are similar to
the interoperable object references (IORs) used in CORBA [16]. Different types
of contact addresses are supported, but these differences are all hidden to GDN
clients. We return to these issues when discussing object servers.

3.2 Integrationin the Web

Many users on the Internet prefer to use their existing client-side software to access
services such as offered by GDN. We did not find it reasonable to force users to
install GDN-aware clients in order to be able to access GDN. Instead, we have
chosen to provide a means that allows the use of standard browsers to download
the files contained in package objects. However, at this moment, uploading files
requires using one of our GDN clients. In the following, we briefly describe how
GDN is integrated into the Web.

Naming | ssues

A minimal requirement for integration in the Web is that we adopt a naming con-
vention that is accepted by Web browsers. In practice, this means that a user should
be able to use a browser-recognizable Uniform Resource Identifier (URI). Unfortu-
nately, not all browsers are capable of recognizing the same URIs. In some cases,
such as Netscape, the types of URIs that are supported is fixed, Other browsers,
like the Mozilla version of Netscape and Internet Explorer provide more flexibility.

We have decided to take a two-step approach. First, Globe pathnames are ex-
tended to Globe URNSs by attaching the prefix “globe:/” to each pathname, leading
to names such as globe://nl/ivu/cs/globe/proj/lhome. Underlying this naming con-
vention is that extensible browsers should be able to easily support new scheme
identifiers such as “globe.”



However, most browsers recognize only pre-configured scheme identifiers. We
therefore take a second step by embedding Globe names into embedded Globe
URNSs, which are plain HTTP URLs. A name such as http://globe.cs.vu.nl:23003 is
added as a prefix to a Globe name, resulting in, for example, the embedded Globe
URN http://globe.cs.vu.nl:23003/nl/vu/cs/globe/proj/home. This URL refers to an
object known under the Globe name /nlfvu/cs/globe/proj/home. We allow a user
to specify any prefix he likes, but every prefix requires the support from specially
configured Globe HTTP servers. As we explain next, these servers are responsible
for handling Globe URNSs.

GlobeHTTP server

To support downloading of files through Web browsers, we make use of a sitewide
service that translates HT TP requests into read operations on the appropriate pack-
age object and returns the results of an operation as an HTTP reply. This service,
referred to as the Globe HTTP server, consists of two parts, each implemented as
a separate process as shown in Figure 2.

One part is called the Globe gateway and acts as a Globe client that can bind
to any package object. When a process binds to a package object a local represen-
tative of that object is loaded into the process’s address space. The Globe gateway
accepts HTTP requests that contain a Globe URN referring to the requested pack-
age by its name as explained above. Note that the gateway uses HTTP only as
its communication protocol; the names it accepts are always expressed as Globe
URNSs (i.e., with URI scheme identifier globe). The gateway then binds to the
named package object, and executes a read operation to download a file from the
package.

The other part of a Globe HTTP server is the Globe translator. This part acts
as a regular HTTP proxy server that accepts incoming HTTP requests containing
URLSs having http as their scheme identifier. Each translator is configured to recog-
nize a specific prefix as explained above. A URL containing this prefix is treated
as an embedded Globe URN and is translated into a Globe URN. This URN is then
passed to the Globe gateway. The translator also accepts HTML pages that have are
returned by the gateway. Any Globe URNS contained in such a page is translated
into its embedded, after which the modified page is passed on to the client.

In order for a client to access the nearest Globe HTTP server, we apply a
redirection mechanism that is based on the NetGeo service from CAIDA (see
http://www.caida.org/tools/utilities/netgeo/ for more information).
NetGeo maintains a mapping between IP addresses and geographical location.
When a non-Globe client accesses GDN, it does so by sending an HTTP request
to a server at a fixed location (in our case, the location with domain name en-
ter.globeworld.org, but we can support other names as well). Using NetGeo, we
compute the Globe HTTP server that is closest to the requesting client, and return
an HTTP response requesting the client to refresh the returned HTML page at the
selected Globe HTTP server. In effect, we thus establish an HTTP redirect.
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Figure 2: The Globe HTTP server.

4 GDN Internal Organization

Internally, each Globe site consists of a number of servers that jointly comprise
the implementation of Globe for that site. We distinguish four different types of
servers: an object server for hosting the local representatives of distributed (pack-
age) objects, a name server to implement the Globe naming service, a location
server for implementing the location service, and finally a directory service to pro-
vide sitewide information. The organization of these servers and role with respect
to the respective Globe services are discussed in the following.

4.1 Object Server

A crucial server in GDN is the Globe Object Server (GOS). A GOS is responsible
for hosting a replica of a package object. Different package objects may be hosted
by the same GOS. It is also possible to run several object servers at the same site.

Replication Support

An important aspect of the object server is that it provides the facilities for replicat-
ing an object. In principle, for each hosted package object a GOS offers a contact
point that allows other processes to contact the object. A contact point is described
by means of a contact address, which contains exact information on how and where
to reach an object. A contact address is generally made publicly available (e.g., by
means of the Globe location service) to allow clients to bind to the object, as we
explained above.

Globe supports different types of contact addresses. A typical example is a
contact address that contains the IP address of the object server, a TCP port the



server is listening to, and an index identifying the local representative of the pack-
age object. In this case, a process binding to the object may be required to install
only a standard client-side stub that effectively establishes RPCs over TCP/IP. A
completely different example is a contact address consisting of a Java object ref-
erence, in which case a client will only have to deserialize (i.e., unmarshal) the
reference in order to contact the object. We have used this latter mechanism to
wrap a CORBA-like system around Globe [9].

The first copy of a package object is always explicitly created on an object
server using our GDN client. Besides offering processes the facilities to bind to a
hosted package object, a GOS can also be requested to create a replica. A replica
of an existing package object is normally created by instructing an object server
to bind to that object using a contact address that specifies the type of replica that
should be created. The effect is that the binding object server installs a local repre-
sentative for that object and that the files contained in the package are transferred
to the new replica.

It is important to note that the object server has no hard-coded policy concern-
ing the way its hosted package objects are replicated. Each object carries its own
implementation of such a policy; the only thing the object server does is ensure
that an object’s policy is carried out. For example, consider an object server that
is hosting the local representative of a package object that is replicated accord-
ing to a master/slave strategy. If the local representative is the master, then it will
contain code by which updates are eventually propagated to its slaves (which are
hosted by other object servers). The package object decides when and how up-
date propagation takes place; the object server simply provides the means to allow
communication with other servers.

Per sistent-object support

Packages are implemented as persistent objects. A persistent object in Globe is
defined as an object that can continue to exist even it is not currently hosted by an
object server. In contrast, a transient (distributed) object can exist only if there is
at least one server that is hosting the object. To implement a persistent object, an
object server needs to ensure that the state of the local representative it is hosting
is written to persistent storage when the server is shut down. Likewise, that state
should be able to be read from storage by another server at startup time.

To facilitate persistence, our object servers allow contact points to become per-
sistent as well. Persistent contact points remain valid while (the local representative
of) an object is not running; when the object is running again, its contact points can
be used as before.

Fault tolerance

Related to persistence is the support for fault-tolerant objects. At present, GDN
provides only minimal fault tolerance by periodically storing the complete in-



memory state of a local resprentative to disk. If the server crashes during operation,
the most recently saved state is restored effectively recovering local representatives.
No checkpoint is made if the state has not been altered since the last checkpoint.

We decided to implement just periodic checkpointing for performance reasons.
The alternative is to checkpoint the state at each update operation, but this was
felt too expensive as it requires a synchronous disk operation. Further research is
needed to see whether we can improve this situation. In particular, we intend to
explore the promising combination of object-specific fault tolerance and replication
for performance. Some initial work on this matter is described in [10].

When recovering from a server crash, the object server normally contacts the
master replica to see if there have been updates. This synchronization is necessary
to ensure consistency. Before doing so, the server first checks whether any updates
have occurred during the crash period to avoid needless state transfer across the
network.

4.2 Naming Service

As mentioned in the previous section, each package object can have a human-
friendly name that is resolved to an object handle. To this end, the Globe name
space consists of a strict hierarchical name space that is represented as an edge-
labeled rooted tree with each node representing either a directory or a package.
This name space is implemented using DNS technology. For example, an object
name such as /nl/vu/cs/globe/proj/home is internally rewritten to the DNS name
home.proj.globe.cs.vu.nl. and passed to a local DNS server to be resolved.

A node in the Globe name space is implemented as a DNS TXT record. In this
way, we can use existing implementations of DNS to implement our name space.
It is important to note that we do not require DNS to be replaced. Instead, we are
making use of the existing DNS servers and organization, and expand the current
DNS name space by adding leaf domains.

A directory is represented by a DNS domain name and has a special TXT
record associated to it containing the keyword GLOBEDIR and the zone name in
which that directory is supposedly contained. For example, the DNS entry

$0RIGIN org.
globeworld IN TXT "GLOBEDIR globe.cs.vu.nl."

identifies the directory with Globe name /org/globeworld, which is maintained by
the DNS server at globe.cs.vu.nl. Directory entries can contain subdirectories or
object handles, each of which are again implemented as TXT records. The follow-
ing entries identify two subdirectories /org/globeworld/bin and /org/globeworld/proj,
as well as an entry /org/globeworld/fozzie storing an object handle:

$0RIGIN globeworld.org.

bin IN TXT "GLOBEDIR globe.cs.vu.nl."

proj IN TXT "GLOBEDIR globe.cs.vu.nl."

fozzie IN TXT "GLOBEOBJHANDLE ACARZJgItY1PUkSIB590cUN42g/x=="
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Figure 3: The current organization of the Globe location service.

A Globe name server consists of two processes normally colocated on the same
machine. One process is a DNS name server running BIND, which is actually
responsible for storing and maintaining the name space. The other process is a
naming authority, responsible for securely updating the local DNS database on
behalf of clients. Updates are actually carried out by BIND, but which accepts
update requests only from its naming authority.

Organizing the Globe name server as a colocated pair of processes is primarily
done for simplicity. First, letting BIND accept updates from only one process
avoids expensive locking schemes to handle nonatomic update operations. For
example, removing a directory requires a read operation to first check whether the
directory is empty, and a subsequent write operation to actually remove it. Second,
if a naming authority is reponsible for only a single domain, then updates for only
that domain are affected if the naming authority is disrupted. Finally, colocating
the naming authority and the DNS name server has the advantage that the former
can be identified using a normal DNS lookup request. The IP address returned by
the DNS name server is the same one as its associated naming authority.

4.3 Location Service

The Globe Location Service (GLS) is designed to provide a worldwide scalable
solution to locating mobile and replicated objects. For each object, GLS maintains
a mapping between an object’s object handle and the contact addresses where the
object’s replicas can be found. Only those replicas that can be used for binding a
client to the object need to be registered with GLS.

The location service is organized as a worldwide distributed search tree, based
on a hierarchical partitioning of the underlying network into domains. The top-
level domain covers the entire network, whereas the lowest-level domains typically
correspond to a moderately-sized network such as a university campus of the office
network of a corporation’s branch in a certain city. In the current setup, we have a
relatively small five-level tree, as shown in Figure 3.
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Figure 4: Nodes containing a forwarding pointer or address for a package repli-
cated at VU1 and Erlangen.

In this setup, each node is represented by a separate server. Each server main-
tains location information on the package objects that reside in its associated do-
main. This location information is either a contact address or a pointer to a lower-
level domain where the object resides. Location information is stored in a contact
record. For example, consider a package that has been replicated to the VU1 and
the Erlangen domain. The server at Erlangen will store the object’s contact ad-
dress, whereas the server for Germany will store a pointer to the Erlangen server,
and so on, leading to the situation shown in Figure 4.

To look up a contact address, a client contacts its nearest leaf node. If that node
does not contain any location information on the requested package object, the
request is forwarded upwards until a node is reached that does. In the worst case,
a lookup request travels to the root. The root and intermediate nodes store only
forwarding pointers to child nodes. Therefore, the lookup request subsequently
travels a path of forwarding pointers down to one of the leaf nodes.

Returning to our example tree of Figure 4, suppose a client in Rocquencourt
(France) issues a lookup request. That request is first processed at node Rocquen-
court, from where it is forwarded first to France and then to Europe. The latter
stores two forwarding pointers: one to node NL and one to Germany. In such
cases, an arbitrary choice is made in the current setup. Assuming that the request
is forwarded to Germany, it eventually reaches node Erlangen where a contact
address is found, which is then returned to the client.

An important observation is that the lookup request travels only between servers
in the smallest domain in which both the client and the requested package reside.
In a similar fashion, we exploit locality for update operations. Details on these op-
erations, as well as various important refinements and optimizations are described
in [30, 1].

Implementing GLS as a single-rooted tree obviously introduces a scalability
problem for higher-level nodes. The solution to this problem is to apply parti-
tioning techniques. In other words, we implement a logical node using multiple



servers. It is beyond the scope of this paper to describe these techniques in any
detail. However, it is worth noting that it is possible to distribute contact records
in such a way that hosts running servers for GLS are equally loaded while main-
taining the desirable locality properties of having a search tree. Details on such
partitioning schemes, along with a description of simulation experiments are de-
scribed in [29].

4.4 |Infrastructure Service

Each site, finally, also runs an LDAP-based directory server that contains virtually
all configuration information of a site, but can also provide information to remote
clients on local resources. These directory servers jointly constitute a worldwide
directory service known as the Globe Infrastructure Directory Service (GIDS).1 A
GIDS server can be located using its DNS name, which corresponds to the DNS
name of the site the server is part of. In this sense, GIDS is similar to Active
Directory [14], an important difference being that GIDS servers constitute only
leaf nodes in the name space. Intermediate nodes are always DNS servers. This
difference makes GIDS more efficient. Details on GIDS are described in [12].

5 Security

One of the more profound aspects of GDN is its support for security. Obviously, a
system such as GDN should be able to provide protection against various security
attacks. In addition, and perhaps more important considering the various peer-
to-peer file-sharing mechanisms currently under siege, was whether GDN should
also disallow publication of illegal content such as copyrighted material by means
of content moderation. In that case, all content that would be uploaded to GDN
would first need to be checked. We decided that this kind of protection was not
what GDN should offer. Instead, GDN should primarily provide the means to
securely distribute content. In addition, we decided to provide mechanisms that
would allow publishers of illicit content to be banned from using GDN.

To this end, we support a security scheme that is based on traceable files. In this
scheme, each person publishing content in GDN (a GDN producer) is required to
digitally sign all the content he or she publishes, thereby making it traceable to that
person. The GDN checks that uploaded content is traceable and refuses content
that is not. The purpose of the digital signatures is to be able to trace content back
to its original publisher such that when illegal content is found (copyrighted works,
offensive material, malicious or forbidden software) this publisher’s access to the
GDN can be revoked, and his publications removed. Details on this scheme are
described in [2].

When a software maintainer wants to start publishing his software through the
GDN he has to contact one of the so-called access-granting organizations (AGOSs).

1GIDS is Dutch for “guide.”



An AGO verifies the candidate’s identity by checking his passport or other means
of identification. In addition, the organization checks if this person has not been
banned from the GDN by any of the other AGOs. If the candidate is clean, the AGO
creates a certificate linking the identity of the candidate to a candidate-supplied
public key and digitally signs this certificate. This certificate is called the trace
certificate and the key pair of which the public key on this certificate is one part
is called the trace key pair. In addition to creating a trace certificate, the AGO
supplies the producer with Globe security credentials that allow him to access the
GDN. An AGO basically acts as a Certification Authority for GDN users.

Every owner of an object server specifies which producers it wants to give
access to his object server. In principle this is done at AGO-granularity: the owner
specifies which AGOs it trusts to do a proper identity and black-list check, and
only producers that have credentials and certificates signed by those AGOs will
be allowed to create local representatives and place content on that owner’s object
server.

An upload now proceeds as follows. Assume the producer has created a pack-
age object on one of the object servers that trusts the AGO the producer got his
credentials from. Before uploading a file into the GDN, the producer creates a dig-
ital signature for this file using the trace key pair. This signature is referred to as the
trace signature. The trace signature and associated trace certificate are uploaded
into the package object along with the file. When the upload is finished the object
verifies the trace signature. If the signature is false, either because the producer
has been banned from the GDN, the certificate did not contain the right public key,
or the file did not match the digital signature, the object removes the uploaded file
from its state. As only files that are provided by an active producer and that carry a
valid signature are allowed in an object, all content in the GDN is always traceable.

In the current implementation the trace signatures are not checked by the object
itself for technical reasons. Instead trace signatures are checked by an external
service, called BETC, that runs in parallel to each GDN object server. The upload
process is illustrated in Figure 5, and consists of the following five steps.

1. To get access to the GDN a software publisher identifies himself to an AGO
and receives a trace certificate and Globe credentials in return.

2. The producer requests an object server, using his Globe credentials, to create
a GDN package.

3. The producer creates a digital signature for the archive file and uploads it
along with the file and the trace certificate into the GDN package.

4. BETC checks if the file and signature match, and has the object server de-
stroy the replica of the object if not.

5. A user downloads the archive file, trace certificate and trace signature from
the GDN object and verifies that they match.

For the current setup of GDN we are running a single AGO at the Vrije Uni-
versiteit, called Fuego. Fuego is primarily running for demonstration purposes, it



Object

@ Server

credentials
software
producer @ ,

; object
credentials + '\ file + A
file + signature +

! 1a downloader
signature + certificate
@ certificate + certificate
credentials @
passport
AGO BETC

Figure 5: Basic GDN security model.

is by no means to be considered as a certification authority such as, for example,
Verisign. In order to participate in GDN, however, each new GDN producer will
have to obtain a certificate from Fuego by sending an e-mail. This certificate will
contain the maintainer’s public key used to securely trace published material, and
is signed by Fuego.

Details concerning the configuration of various security mechanisms, including
the local storage of key pairs, can be found in the Globe Operations Guide that is
part of the distribution of GDN.

6 Practical Experience and Outlook

GDN as it stands today is the result of combining scientific efforts and develop-
ment work. Development has largely taken place in the form of an externally
supported project called SIRS (“Scalable Internet Resource Service”). One of the
original goals of SIRS/GDN was to come to a solution for offloading popular FTP
sites. The research and development efforts put into GDN amount to approximately
12 person-years of work, excluding the work put into the Globe location service
(which is at least another eight person-years).

GDN is now running on multiple sites across the Internet. There are various
“local” sites hosted in The Netherlands; the main international sites are (in alpha-
betical order):

Amerongen, The Netherlands (NLnet Foundation)
Amsterdam, The Netherlands (Vrije Universiteit)
Ithaca, New York (Cornell University)

Haifa, Israel (Technion)



e Rocquencourt, France (INRIA)
e San Diego, California, USA (CAIDA)
e Sao Paulo, Brazil (University of Sao Paulo)

GDN is hosting software for Linux (2.4 kernels and the RedHat 7.2 updates),
Amoeba, and Minix. We are also hosting various Web sites. Experiments have
begun to host a large portion of the SourceForge database, replicating it across San
Diego (CAIDA), Redwood City (Vixie Enterprises), and Amsterdam (VU). These
experiments still need to be completed and require additional development work at
the VU.

We are continuing our efforts to host content and welcome any
suggestions. Also, parties that are willing to participate in setting
up a larger GDN network are very welcome.

Research and development on GDN continues. At present, our group is actively
conducting research in the following areas:

Adaptivereplication We are currently looking into dynamic replication of Web
documents. So far, this research has provided us insight in how and when
to evaluate access traces in order to decide what a best replication strategy
is [19]. Future research will concentrate on the selection of the best location
to place a replica. Also, we will take a look at dynamically switching the
consistency protocol so as to optimize network resources and access delays.
The results of these research will be embedded into future GDN releasees.

Systems management: We are also currently looking at management issues. In
particular, we considering the problem how we can automatically bring up
an entire, worldwide-spanning location service tree without initially having
to physically distribute that tree across the Internet as well. This research
affects the (semi-)automatic distribution of GDN across multiple sites. In
addition, we have recently started to concentrate on more general systems
management issues related to distributed systems such as GDN. For exam-
ple, we are currently working on a general scheme to add and remove servers
comprising a distributed service.

In conclusion, we feel that we have just made a start with GDN when it comes to
its deployment. However, we are continuing the research that has been set out as
part of GDN and expect to enhance the current system in terms of size, content,
and functionality.
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