
Non-stop Provision of Internet Services via
a Reflectively Load-Sharing Architecture

Kostas Zorbadelos1, Christos KK Loverdos1, and Alex Delis2

1 OTENET S.A.
15124, Maroussi, Greece

{kzorba,loverdos}@otenet.gr
2 University of Athens
15771, Athens, Greece

ad@di.uoa.gr

Abstract. There exists a growing need to offer continuously available and reliable Internet
services to a very large number of companies, organizations and individuals. Such services
include, but are not limited to, http, ldap, smtp, radius, and dns. In this paper, we propose
a reflective, load-balancing, and highly available architecture to address this problem and
discuss key aspects of our prototype implementation. Our solution is based on farms or pools
of computing nodes that are essentially responsible for the delivery of services. All these nodes
operate behind a network-device that acts as the front-end to the services and coordinates
the work of the nodes in a reflective and load-conscious manner. A comprehensive and highly
configurable administration shell allows for the on-line manipulation and handling of both
network-device and computing nodes in either interactive or batch-node. Our main objective
is to create an open-source-based system that not only provides 7x24-availability to Internet
services offered, but can also grow in terms of resources gracefully while avoiding down-times
and long reconfiguration delays. To this effect, our solution aspires to successfully replace
proprietary embedded machinery geared into offering non-stop provision of Internet services.

1 Introduction

The ongoing surge on Internet traffic and the continual deployment of new Web and
information services do pose ever-increasing demands on the performance of ISP servers.
Clearly, one could address high-rates of Internet traffic and requests for services by simply
over-provisioning through upgrades of few critical servers and ultimate purchase of more
powerful hardware. Yet, this solution is often deemed limited, in the sense that soon new
upgrades will be required. Alternatively, we can expand the networks of ISP-servers with
new, often off-the-self, and inexpensive hardware to form networks of computing nodes
that will collectively facilitate the ISP incoming/outgoing traffic. The presence of multiple
such machines calls for not only an organizational structure but perhaps more critical is
the requirement to have all elements in the network of nodes to be equally utilized to avoid
resource overload.

In light of a growing number of servers, there is an ever more frequent problem of nodes
failing. Our architecture should feature an “intelligent” way to cease forwarding traffic to
failed servers and start using them again once their corresponding services recover. Ideally,
the system should self-adapt its configuration so that any connections to failed servers are

migrated to operational ones without clients noticing the difference [5]. In this manner,
we should be able to provide transparent fail-over and high-availability both crucial in
ensuring the quality of rendered Web and information services.

To address the above requirements when it comes to ISP services, we use an ap-
proach that combines both load-sharing and high-availability. In our proposed scheme,
any Internet service is given a virtual IP on a network-device for which we guarantee
7x24-availability; the actual client requests are load-balanced in a cluster of machines
physically located behind the network-device in question. Our approach has a few notable
advantages:

• extensibility: more servers can be readily added to the cluster as soon as traffic in-
creases.

• cost-effectiveness: through the use of commodity hardware, we intend to maximize
performance/cost ratio.

• better perceived QoS for the end user: this is attained by minimizing down-times for
Web and information services. To this effect, any organization that adopts such an
architecture is anticipated to enhance its credibility among the client base.

• single point of entry: from a client’s point of view, the cluster appears to be a sin-
gle server that responds to its requests. By utilizing network address manipulation
techniques such as PF’s nat and rdr, the back-end network may consist of machines
running any operating system with a TCP/IP stack. The cluster nodes may use private
Internet addresses; however, only one public IP-address is visible to the outside word
as a point of entry.

• easy security policy enforcement: the isolation of the cluster nodes from the outside
world requires each packet pass through the network-device offering a single point for
enforcing low-level security policies.

• administration convenience: software upgrades can be scheduled with no loss of service
at any moment; besides, more nodes can be added/taken-off from the cluster and nodes
can be easily reassigned to other services on the fly.

Our proposed solution involves the following well-established open-source technologies:

– FreeBSD [10], the contemporary operating system derived from the BSD version of
UNIX R©. FreeBSD enjoys the largest installation base among BSD-derived systems and
has an established reputation for system stability, performance, security and advanced
networking features.

– The Packet Filter (PF) [16, 14], used for filtering TCP/IP traffic and carrying out neces-
sary network address manipulation. It is also capable of normalizing and conditioning
TCP/IP traffic, providing bandwidth control and packet prioritization. PF can be also
used to create powerful and flexible firewalls [7]. It is derived from OpenBSD [15], a
project widely known for its efforts to offer security and integrated cryptography at
the system design level. PF was ported to FreeBSD and became an integral part of its
base system since 5.3-RELEASE.

– Common Address Redundancy Protocol (CARP) [14] and pfsync which are collectively
used to ensure the high availability of our solution [8]. CARP, is a secure free alterna-
tive to other redundancy protocols [6, 4] while pfsync is a UNIX device that transfers

connection states between different machines. They both originate from the OpenBSD
project.

– Python [17], the scripting language with rapid prototyping capabilities is predominantly
used in the implementation of our administration shell.

The rest of the paper is organized as follows: Section 2 outlines our proposed system
architecture and Section 3 analyzes our design decisions and discusses our prototype im-
plementation. Section 4 presents the evaluation of our a few typical scenarios. Finally,
Section 5 presents related work and Section 6 concludes with remarks for planned future
extensions.

2 System Architecture

We build a FreeBSD-based network-device (Fig. 1), placed between two networks, a pub-
licly accessible and an internal one. Each Internet service rendered is assigned an IP is
the publicly accessible network and a corresponding server farm (or pool) in the internal
network. This group of nodes that realizes a specific service constitutes a virtual server.
All pertinent traffic to the service regardless of its origination has to pass through the
network-device that features the specific IP and is distributed to the corresponding server
pool.

Internet

Server farm 1 Server farm 2

(service IP1
service IP2
...
service IPn)
external network interface

internal network interface

Connections from Internet to service IPs

Connections between server farms (reflected)

FreeBSD
device

Fig. 1. Architecture overview.

In our solution, PF provides the load-sharing functionality and CARP with pfsync
are responsible for giving high availability to the gateway device. Moreover, we provide
a specialized shell, whose key objectives are to coordinate the function of the underly-
ing system and help configure it in a straightforward manner. The shell is capable of
both (re)configuring the load-balancing device and monitoring the running machines and
services. The shell co-operates with a poller component to achieve the monitoring func-
tionality; based on the polling outcome our system may eliminate defective machines from
the server farms to ensure high service availability.

2.1 Reflective Load-Sharing

As farms of servers are the main elements for service provision in the internal network,
every farm is designated to handle a specific type of requests. Types of requests include
http, ssh, ldap, smtp, and radius. It is worth pointing out that a server may be shared
among multiple pools.

Our architecture employs a reflective-approach in handling inter-related services. For
instance, an smtp session may necessitate multiple ldap requests. The latter have to be
serviced by a different farm and individual ldap calls may finally be answered by dif-
ferent servers in the corresponding farm. The decision of which server is used at any
specific moment in time is undertaken by the network-device and is the major reflection
aspect of our architecture; the reflection is depicted in Fig. 1 by the dashed lines. Over-
all, the network-device carries out not only balancing of outside-world requests, but also
load-shares requests among the farms themselves. The reflective aspects of our proposed
architecture are discussed in the context of two specific examples below:

Mail delivery with LDAP queries : In this scenario, we deal with smtp and ldap
services that need to be collectively load-shared as Fig. 2 indicates. Our publicly accessible
service IPs are located in the range 62.103.127.144/28 and the actual servers are placed
in the LAN 192.168.1.0/24. For each service we configure a separate IP address as shown
below in the DNS entries:

[zone ourdomain.tld]

...

@ IN MX 10 mx.ourdomain.tld.

mx IN A 62.103.127.154

ldap IN A 62.103.127.157

The remote Mail Transfer Agent (MTA)(e.g sendmail or postfix) attempts to deliver a
message destined to a recipient at ourdomain.tld. For this purpose, it opens a connection
to mx.ourdomain.tld (the declared MX in DNS for ourdomain.tld zone) port 25. The
connection is finally routed to the external interface of our device, since the MX-IP is one
of the service IPs configured. According to the PF rules active on the network-device
shown in Fig. 3, the connection is redirected to one of the machines in the pool for the
mail delivery service (line 17). This is accomplished in a round-robin fashion.

Internet

service IP1: 62.103.127.154 (mx.ourdomain.tld)
service IP2: 62.103.125.157 (ldap.ourdomain.tld)

Server farm 1: mx machines
(running e.g. sendmail)

Server farm2: ldap machines
(running e.g. openldap)

Remote MTA

User Mailboxes

connection for the SMTP session

connection for the LDAP query (reflected)

Fig. 2. Email delivery with LDAP queries.

The target machine issues an ldap query to determine whether the user exists and to
find all the necessary information to perform the delivery (e.g., where the location of her
mailbox is). An ldap query can also be performed for other reasons, like the resolving of
mail aliases stored in the catalogue. The ldap query causes a new connection to the service
IP configured for the ldap service (ldap.ourdomain.tld). This time the connection reaches
our device through its internal interface. Therefore, the redirection rule on the external
interface is not applicable. The reason is that the TCP/IP stack on the device compares
the destination address of incoming packets with its own addresses and aliases and detects
connections to itself as soon as they have passed the internal interface. It is for these
reflected connections (connections to public service IPs from clients inside the machine
pools network) that rdr and nat rules are necessary on the internal interface (lines 18,
21, 24, 27, 28, of Fig. 3).

By using PF tables in our rules, it is easy to manipulate them on the fly using pfctl
[14]. This way, we can detect and eliminate any failed nodes in our setup by polling the
cluster machines. However, at this time, no other algorithms other than round-robin can
be used with PF tables. Other supported algorithms in PF include bitmask, random and
source-hash but require that the pool be expressed in a CIDR (Classless Inter-Domain
Routing) block. All these algorithms are described in the pf.conf man page. The achieved
result is that both connections originating from the outside world and the reflected ones
form the inside network get load balanced to the service machine pools. Failing nodes are
transparently eliminated.

1 ext_if="xl0" # replace with actual external interface name i.e., dc0

2 int_if="xl1" # replace with actual internal interface name i.e., dc1

3 internal_net="192.168.1.0/24"

4 internal_gw="192.168.1.1"

5 external_addr="62.103.127.153"

6 # The service IP for mx.ourdomain.tld

7 mx_service_ip="62.103.127.154"

8 # The service IP for ldap.ourdomain.tld

9 ldap_service_ip="62.103.127.157"

10 # The pool of mx mail servers

11 table <mx_pool> {192.168.1.2,192.168.1.3}
12 # The pool of ldap servers

13 table <ldap_pool> {192.168.1.2,192.168.1.3,192.168.1.4}
14 # This is required for the internal machines to see the outside world

15 nat on $ext_if from $internal_net to any -> $external_addr

16 # The rdr rules for the mx mail service

17 rdr on $ext_if proto tcp from any to $mx_service_ip port 25 -> <mx_pool>

18 rdr on $int_if proto tcp from $internal_net to $mx_service_ip port 25 -> <mx_pool>

19 # This is necessary for the reflection of connections from internal net

20 # to the mx mail service

21 nat on $int_if proto tcp from $internal_net to <mx_pool> port 25 -> $internal_gw

22 # The rdr rules for the ldap service

23 rdr on $ext_if proto tcp from any to $ldap_service_ip port 389 -> <ldap_pool>

24 rdr on $int_if proto tcp from $internal_net to $ldap_service_ip port 389 -> <ldap_pool>

25 # This is necessary for the reflection of connections from internal net

26 # to the ldap service

27 nat on $int_if proto tcp from $internal_net to <ldap_pool> port 389 -> $internal_gw

28 no nat on $int_if proto tcp from $int_if to $internal_net

Fig. 3. The PF rules for mail delivery with ldap lookups.

Web sites with user sessions and LDAP authentication There are two services in
this example, http and ldap. The catalog, maintains the user database for the registration
in the sites. The following DNS entries demonstrate the service IPs we use in our setup.

[zone ourdomain.tld]

...

www IN A 62.103.127.154

ldap IN A 62.103.127.157

The main difference with the scenario presented before, is the need to direct each
client to the same web server. There are many web applications that require some form of
authentication/registration of the user and create sessions that persist for a period of time.
The http session objects can contain a wide variety of data including like user personal
preferences and shopping cart information. It is therefore necessary to always direct the
connections of a specific client to the web server that holds its session.

There are two ways to achieve the above functionality with PF. The first is the
source-hash load balancing method that can be declared in a rdr or nat rule that deals
with address pools. In this method, each client’s IP is hashed and always mapped on the
same server, which solves our problem. However, in the current implementation of PF,
all load balancing methods except for the round-robin, require that the address pool
be expressed as a CIDR network block and the use of PF tables to express the pool is

prohibited. There is a second way that provides the required functionality, without all the
previously mentioned restrictions. We can use the sticky-address option in random and
round-robin pool types to ensure that a particular source address is always mapped to the
same redirection address. This, by default ensures the stickiness of a client as long as there
is at least a connection state entry in PF for that client. Nonetheless, sticky-address
works also without states, provided that one sets a reasonable value for the src.track
time-related parameter as described in pf.conf man page.

1 ext_if="xl0" # replace with actual external interface name i.e., dc0

2 int_if="xl1" # replace with actual internal interface name i.e., dc1

3 internal_net="192.168.1.0/24"

4 internal_gw="192.168.1.1"

5 external_addr="62.103.127.153"

6 # The service IP for ldap.ourdomain.tld

7 ldap_service_ip="62.103.127.157"

8 # The service IP for www.ourdomain.tld

9 www_service_ip="62.103.127.154"

10 # The pool of ldap servers

11 table <ldap_pool> {192.168.1.2,192.168.1.3,192.168.1.4}
12 # The pool of web servers

13 table <www_pool> {192.168.1.2,192.168.1.3,192.168.1.4}
14 # This is required for the internal machines to see the outside world

15 nat on $ext_if from $internal_net to any -> $external_addr

16 # The rdr rules for the ldap service

17 rdr on $ext_if proto tcp from any to $ldap_service_ip port 389 -> <ldap_pool>

18 rdr on $int_if proto tcp from $internal_net to $ldap_service_ip port 389 -> <ldap_pool>

19 # This is necessary for the reflection of connections from internal net

20 # to the ldap service

21 nat on $int_if proto tcp from $internal_net to <ldap_pool> port 389 -> $internal_gw

22 # The rdr rules for the www service

23 rdr on $ext_if proto tcp from any to $www_service_ip port 80 -> <www_pool> sticky-address

24 no nat on $int_if proto tcp from $int_if to $internal_net

Fig. 4. The PF rules for web sites with ldap authentication.

The sticky-address method is used in our rules as depicted in line 23 of Fig. 4. Note
that there is no need for connection reflection in the http service since no connections to
web servers are generated from machines in the internal network.

2.2 High Availability

From all previous sections it becomes apparent that our network-device is critical for the
operation of both the services and the network connectivity of the constituent servers to
the outside world. In our experimental setup, the device also provides DNS service for our
domain (ourdomain.tld). It is therefore important to take measures to ensure that the
device is not a single point of failure in the network.

CARP and pfsync are the components we use to address this problem. They both come
from OpenBSD (since its 3.5 Release) just like PF. With the use of these tools we can
achieve a setup similar to the one shown in Fig. 5, where we have two devices in parallel.

All traffic passes through the primary device and in case of failure the backup device
assumes the primary’s role and continues where the first left off.

Internet

Internal network

primary device backup device

xl0 xl0

xl1 xl1

xl2 xl2

Outgoing network traffic

Incoming network traffic

pfsync traffic
carp0 (master)

192.168.1.1
carp0 (backup)

192.168.1.1

carp1 (master)

carp2 (master)

carp1 (backup)
carp2 (backup)

Fig. 5. Highly available device setup.

The Common Address Redundancy Protocol manages fail-over at the Link and IP
layers (layers 2 and 3 in the OSI Model respectively). It provides the capability to define
groups with each CARP group having a virtual MAC (link layer) address, and one or more
virtual host IP addresses (the common address). The master of an address sends out CARP
advertisement messages via multicast using the CARP protocol on a regular basis, and the
backup hosts listen for this advertisement. If the advertisements stop from the master,
the backup hosts begin advertising (becoming masters themselves). The advertisement
frequency is configurable, and the host which advertises more frequently is the one most
likely to become master in the event of a failure. CARP has a few technical differences
from similar protocols [4, 6] and it is not patent encumbered. CARP advertisements are
cryptographically protected.

Pfsync transfers nat and rdr state information between the devices. Each device sends
these messages out via multicast on a specified interface, using the PFSYNC protocol. It
also listens on that interface for similar messages from other devices, and imports them
into the local state table. This way the connection states propagate on both devices. In
the event of a device failure the second device can resume operations with no connections
affected. Since there is no built-in authentication or any other sort of protection for the

PFSYNC messages, it is strongly recommended that a dedicated, trusted network be used
for pfsync (like a simple crossover cable between interfaces on the two devices).

In our setup, we create a carp interface to hold the gateway IP for the internal servers
(192.168.1.1) as well as a carp interface for each public service IP. We have also enabled
the sysctl carp preempt option (net.inet.carp.preempt) on both devices, since it is desir-
able to fail-over all of the carp interfaces together, when one of the physical interfaces goes
down. The exact configuration in the interfaces of our devices is depicted in Fig. 6. Notice
the difference in the advskew parameter that causes the first device to become master
whenever it is available, since the net.inet.carp.preempt sysctl state is in effect.

[device-1 (master)]

ifconfig_carp0="vhid 1 pass carp0pass 192.168.1.1/24"

ifconfig_carp1="vhid 2 pass carp1pass 62.103.127.154/28"

ifconfig_carp2="vhid 3 pass carp2pass 62.103.127.157/28"

[device-2 (backup)]

ifconfig_carp0="vhid 1 pass carp0pass advskew 100 192.168.1.1/24"

ifconfig_carp1="vhid 2 pass carp1pass advskew 100 62.103.127.154/28"

ifconfig_carp2="vhid 3 pass carp2pass advskew 100 62.103.127.157/28"

Fig. 6. The /etc/rc.conf definitions for the carp interfaces.

3 Software Components for the Handling of the Cluster Elements

By using the separation of concerns principle [9] during our design phase, we have identi-
fied that the following key elements are required for the implementation of the proposed
architecture:

• An administration shell.
• A health checking component.
• A data model.

We introduce the administration shell for the configuration of our load balancing network-
device and for service status reporting. The health checking component is responsible for
monitoring service liveness and acting appropriately on service failure or recovery. Last
but not least, a data model is needed to a) represent the basic concepts of our architecture
and b) provide a communication medium between the administration shell and the health
checking component. Below, we further present the specific functionalities and design
choices for the three elements.

3.1 lbsh: A Domain Specific Shell for Administration

Although PF rules are straightforward to write, we believe that we need a specific command
repertoire to directly support the proposed architecture and its concepts such as services

and farms/pools of servers. lbsh, which we have developed for this purpose, interprets
a Domain Specific Language (DSL) designed for our environment. lbsh is actually an
application of a ”meta-shell” that we have implemented and named oyster. oyster offers a
generic API for the creation of application specific shells.

The code in Fig. 7, written in our DSL, configures the device for serving smtp and ldap
requests by dedicated pools of servers and defines both external and internal interfaces, the
internal network range used by the server farms and the gateway for the internal network.
Comments are introduced using the ’#’ character.

interface external xl0

interface internal xl1

internal net 192.168.1.0/24

internal gw 192.168.1.1

service SMTP is 62.103.127.154 tcp 25

service LDAP is 62.103.127.157 tcp 389 reflect

The pool of SMTP servers

pool mx_pool for SMTP

add 192.168.1.2 to mx_pool

add 192.168.1.3 to mx_pool

The pool of LDAP servers

pool ldap_pool for LDAP

add 192.168.1.2 to ldap_pool

add 192.168.1.3 to ldap_pool

add 192.168.1.4 to ldap_pool

Fig. 7. Sample device configuration using lbsh.

Our Domain Specific Language statements are directly mapped to underlying PF rules.
Moreover, the shell provides commands for checking the status of services which is par-
ticularly useful in interactive sessions. An example of such an interactive session is given
in Fig. 8. lbsh is capable of providing hints for command completion and usage when
executing interactively, as seen in lines 25 and 26 of Fig. 8.

A brief description of the meta-shell: oyster is an object-oriented framework that
assists in creating extensible shells [13]. The main idea is to provide a set of APIs for:

– The specification and interpretation of Domain Specific Languages.
– The generation of shells that can be executed either interactively or in batch mode.

oyster provides:

– A uniform object-oriented API that enables the creation of new commands.
– Programmable completion used in interactive shell sessions.

1 >> status 192.168.1.2

2 192.168.1.2 is configured for SMTP, LDAP

3 SMTP on 192.168.1.2 is UP [1 days, 00:12:34]

4 LDAP on 192.168.1.2 is DOWN [0 days, 00:00:02]

5

6 >> status ldap_pool

7 ldap_pool LDAP

8 --------------- ----

9 192.168.1.2 DOWN

10 192.168.1.3 UP

11 192.168.1.4 UP

12

13 >> pool SOME_POOL for FOO

14 ERROR: undefined service FOO

15

16 >> service FOO as 62.103.127.150 tcp 39

17 Added new service FOO with dedicated IP 162.103.127.150 and

18 TCP Port 39

19

20 >> pool SOME_POOL for FOO

21 >> help add

22 Syntax: ‘‘add’’ IP ‘‘to’’ POOL

23 Example: add 192.168.1.100 to some_pool_name

24

25 >> add 192.168.1.100 to <Tab is pressed>
26 ldap_pool mx_pool SOME_POOL <completions suggested by the shell>
27 >> add 192.168.1.100 to SOME_POOL

28 Added 192.168.1.100 to pool SOME_POOL

Fig. 8. lbsh interactive session.

– Namespaces so that commands with logically related functionality can be grouped
together.

– An abstraction layer for input sources so that we can uniformly treat both a readline-
capable terminal session and a file.

– A reference shell implementation with a predefined set of commands.

oyster does not enforce the specification of a DSL by means of a grammar, but this
functionality can be easily built by using the facilities oyster provides. A prototype im-
plementation exists in Python, leveraging the full power of this scripting language [13].
Describing the full details of oyster’s design and prototype implementation is beyond the
scope of this paper; however, we present in Fig. 9 its core structure in UML. We intend
to release oyster soon as an open-source project.

lbsh commands: We leverage the API provided by oyster in order to create our admin-
istration shell. The domain specific commands are created under namespace lb. In the
following paragraphs, we give the command usage and explain the interpretation of three
such statements, namely, service, pool and add. We represent literal strings using single
quotes and optional parameters using brackets.

¦ ’interface’ ’internal’|’external’ NAME [ifconfig-params]
This is used to declare the internal and external interfaces of the device. If the optional

«interface»
IInput

getCurrentLine() : String
getNextLine() : String
isInteractive() : boolean

«interface»
IInteractiveInput

setPrompt(prompt : String)
setCompleter(completer : IShellCompleter)

StringInput FileReaderInput

ReadlineInput

«interface»
IShell

setAttribute(name : String, value : Object)
getAttribute(name : String) : Object
isInteractive() : boolean
addCommand(cmd : ICommand)
getInput() : IInput
run()
eval(input : IInput) : Object

«interface»
IShellCompleter

complete(shell : IShell, state : int, txt : String) : String

«interface»
ICommand

getNamespace() : String
getInfo() : Map<String, String>
interpret(shell : IShell) : Object

HelpCmd ExitCmd PythonCmd

Fig. 9. A snapshot of oyster’s Object-Oriented Programming Interface.

ifconfig-params are given, then lbsh assumes that the user wants to configure those
interfaces and so ifconfig is executed. When the command is interpreted by the shell,
appropriate entries are created in the data model for the names of the interfaces.

¦ ’internal net’ CIDR
The command is used to declare the network block for the server farms.

¦ ’internal gw’ IP
This declares the gateway IP to be used by the machines in the server pools.

¦ ’service’ NAME ’is’ IP PROTO PORT [’sticky’] [’reflect’]
This statement is used to define our services. We give a compact specification, con-
taining all the necessary parameters for the generation of appropriate PF rules. If the
optional parameters sticky and reflect are present, they are used to enable the
sticky-address feature and connection reflection respectively. At the lower level, this
command just updates the data model with a new definition.

¦ ’pool’ NAME ’for’ SERVICE
A named pool is created for the given service. Currently, there is one-to-one corre-
spondence between a pool and a service. By default, the command creates both a PF
table and an rdr rule for the service. If reflect has been specified in the service’s cor-
responding definition, then additional rdr and nat rules are generated. For example,
these commands:

service WWW is 62.103.127.154 tcp 80 sticky

pool www_pool for WWW

generate the following PF rules:

table <www_pool> {}
rdr on xl0 proto tcp from any to 62.103.127.154 port 80 -> <www_pool> sticky-address

where xl0 is assumed to be the name given by a preceding ’interface external xl0’
command.

On the other hand, if we would like to have service requests from the internal machines
reflected, as is the case of LDAP in Section 2.1, then a reflect parameter is mandatory:

service LDAP is 62.103.127.157 tcp 389 reflect

pool ldap_pool for LDAP

The configuration above produces the PF rules:

table <ldap_pool> {}
rdr on xl0 proto tcp from any to 62.103.127.157 port 389 -> <ldap_pool>

rdr on xl1 proto tcp from 192.168.1.0/24 to 62.103.127.157 389 -> <ldap_pool>

nat on xl1 proto tcp from 192.168.1.0/24 to <ldap_pool> port 389 -> 192.168.1.1

where 192.168.1.0/24 is assumed to be the internal network defined by a preceding
’internal net 192.168.1.0/24’ command and 192.168.1.1 is the internal gateway
defined with a prior issued ’internal gw 192.168.1.1’ command.
We should note that the generated PF rules are incorporated into the load balancing
device using pfctl.

¦ ’add’ IP ’to’ POOL
We use this command to declare that the machine holding the specified internal IP,
is able to handle the service corresponding to the designated pool. When the add
command is interpreted, it updates the data model with the new IP/pool association.
At the PF rules level, assuming that service and pool commands have been issued
previously, we handle add by calling pfctl to insert the corresponding IP into the defined
PF table.

¦ ’remove’ IP ’from’ POOL or ’remove’ SERVICE
remove does exactly the opposite of add.

¦ ’status’ SERVICE|POOL|IP
This command provides reports for each specified entity.

¦ ’save’
This command is used to produce a valid, low-level packet filter configuration file; for
PF under FreeBSD this file is /etc/pf.conf.

Help on each command can be given at any time from an interactive lbsh session:

>>> help interface

name: lb.interface

class: cmdInterface

usage: ’interface’ ’internal’|’external’ NAME [ifconfig params]

where: NAME: the network device name as understood by the os (e.g xl0 for FreeBSD)

3.2 Health Checking Component

Monitoring for the liveness of services, calls for a separate health checking component. In
our implementation, this component, which we term poller, checks for the availability of
specific services in the pools over regular time intervals. Whenever a service is detected
to be either UP or DOWN, corresponding packet filter rules are executed in the network-
device’s kernel, so as to modify the routing of subsequent requests.

while True:

choose the next IP and SERVICE to check, from all the pools

call checktaskFactory to obtain a checkTask for the given IP and SERVICE

call checkTask and obtain the service status

call actionHandler with the produced status

Fig. 10. The scheduler generic algorithm.

The design of the poller is completely modular. In essence, all that is needed is the
specification of the following objects:

pfDriver: Although we base our solution on BSD’s PF, there is essentially no good reason
to hard code this dependency in our implementation. What is actually needed is to
abstract all the actions necessary to:
– initialize the state of the underlying packet filter.
– make the incremental (on demand) addition and removal of pool machines.

We have achieved this by introducing the notion of a packet filter driver and by pro-
viding a first implementation based, of course, on PF. If someone wants to employ the
architecture of our solution to a Linux-based setting, then one should, for instance,
implement an iptables-based packet filter driver.

checktaskFactory: This object is responsible for using an appropriate protocol or method
of some sort to check the availability of a specific service. For example, if we have a ra-
dius server, we can send a dummy authentication message, Access Request, to just check
if the server is up and running. In effect, checktaskFactory is a factory of pluggable
algorithms for checking services.

model: The model is the communication means between the shell and the poller and is
described in more detail in Section 3.3.

actionHandler: The action handler performs specific actions on behalf of the poller, as
soon a change in the status of a service is detected. In the current implementation,
the default action handler updates the model with the new status and calls the packet
filter driver, to update the underlying PF rules.

scheduler: The poller itself does not provide a specific polling algorithm. This is the
responsibility of the scheduler object. The scheduler specifies an iteration algorithm
over the servers in the various service pools; its job is described in the code snippet of
Fig. 10.

3.3 Data Model

It is implied from the shell interactive session presented in Section 3.1 that the shell should
be aware of the status of services in the farms involved. In this regard, a status command
produces the requisite report. On the other hand, the service status is modified by the
poller. This led us to introduce a separate entity which we name data model. In generic
architecture terminology, this resembles a communication bus among several interacting
components.

Our data model is hierarchical, represented as a tree of nodes. Each node is either a
container and thus has children, or a leaf node. The tree root is termed ROOT. On each
node we can store a set of attributes. For the purposes of our prototype implementation,
we map this tree hierarchy directly on the filesystem, thus making the model persistent.
Moreover, we implement atomic modification operations for attributes.

Table 1 shows the exact hierarchy we employ. The entries in the leftmost column are
indented properly, to point-out parent-child relationship.

Node Container? Parent attributes

ROOT Yes service SMTP: {ip: ..., port: ..., sticky: ...}
service LDAP: {ip: ..., port: ..., sticky: ...}
...
interface internal: xl1
interface external: xl0

pools Yes ROOT

mx pool Yes pools service: SMTP
192.168.1.2 No mx pool status: UP
192.168.1.3 No mx pool status: UP

ldap pool Yes pools service: LDAP
192.168.1.2 No ldap pool status: UP
192.168.1.3 No ldap pool status: UP
192.168.1.4 No ldap pool status: UP

Table 1. Hierarchical Data Model.

We would like to note the following for the adopted data model:

– We use the ROOT node to store information regarding the specification of services,
as defined by the lbsh command service. We also store both internal and external
interface definitions, as designated in the lbsh command interface.

– Each pool is represented by its exact name under the pools container node, which
in turn resides under ROOT. There is exactly one attribute per pool tree-node which
articulates the name of the service this pool was created for (using the ’pool POOL
for SERVICE’ command).

– All the IPs that participate in a pool, are represented by leaf nodes under their parent
pool tree-node. These leaf-level nodes have an attribute corresponding to their status.

4 System Evaluation

4.1 Experimental Test-bed Description

To thoroughly evaluate the pros and cons of our proposed approach, we created an experi-
mental test-bed consisting of two networks; the public network is accessible in the IP range
62.103.127.144/28, while the internal network uses IPs in the range 192.168.1.0/24.
We used three workstations with rather dated-hardware running FreeBSD 6.0 and we uti-
lized the FreeBSD jail facility [14] that enabled us to simulate an environment with more

than three nodes. The first machine, with hostname daemon1, is a Pentium III@850MHz
with 256 MB memory, two 3Com 3c905C-TX network interfaces and has a single 40GB
hard drive. The second workstation named daemon2, is a Pentium III@730MHz, with 256
MB memory, a 10GB hard drive and two network interfaces: an Intel 82559 Pro/100 and
a 3Com 3c905C-TX. We also configured a jail environment on this machine, daemon2-j1.
Finally, the third machine named daemon3, is a Pentium III@900MHz with 512 MB mem-
ory, 80GB disk space and a single Intel 82550 Pro/100 network interface. We created two
jails on this machine namely, daemon3-j1 and daemon3-j2. Each jail appears as a separate
host and is configured to provide smtp, ldap, http services running sendmail, openldap
and apache respectively.

We have investigated two arrangements for our workstations: the first arrangement
tests how well the failover behaves and the second stress-examines the provided services.
Fig. 11(a) shows the first arrangement in which the daemon2-j1 jail was de-activated
and daemon2 was placed in “in parallel” with daemon1. Host daemon1 plays the role of
the primary gateway load-sharing network-device, while daemon2 was the hot-standby.
Fig. 11(b) depicts our second experimental arrangement; we activated all jails and placed

Internet

daemon1 daemon2

hub

switch

daemon3
daemon3-j1 daemon3-j2

xl1 xl0

fxp0xl0

62.103.127.144/28

192.168.1.0/24

Traffic from the outside world

62.103.127.154

192.168.1.1
carp0 carp0

carp1 carp1

(a) Setup 1 - Parallel gateway devices

Internet

daemon1

daemon2

hub

switch

daemon3daemon3-j1

xl1

xl0

62.103.127.144/28

192.168.1.0/24

daemon2-j1

Traffic from the outside world

Traffic between the server farms (reflected)

62.103.127.154

192.168.1.1

mx pool
ldap pool

(b) Setup 2 - A gateway device with server farms

Fig. 11. Different workstation arrangements in our experimental test-bed.

daemon2 in the internal network while having daemon3. This setup, provided a total of five
nodes to be used in server farms. In both arrangements, the network-device undertook the
role of authoritative nameserver for the entire ourdomain.tld domain to which all of our
machinery belongs. In this context, our gateway network-device has to manage additional
load caused by the name resolution process.

4.2 Test Scenarios

For the execution of our tests, we developed an smtp workload generation script. The
script can simulate a number of concurrent clients, each of which sends a configurable
count of mail messages with a specified delay between consecutive sends. The mail items
dispatched, are rather small in terms of size –approximately 1kb in length– as we want
to avoid over-stressing our dated hardware. Each mail is destined to an alias address
(authors@ourdomain.tld) that sendmail has to resolve in ldap; so, reflected connections
are generated from the mx pool of machines towards the ldap farm.

Simulation of failed service nodes: We arrange the workstations according to Fig. 11(b)
with daemon1 assuming the role of the network-device. There are two pools of servers: the
first consists of daemon2, daemon3 and daemon3-j1 and provides the smtp service; the
second contains daemon3, daemon2 and daemon2-j1 and offers ldap. We generated smtp
workloads with a variable number of concurrent clients (4, 8, 16, 32, 64, 128). Each client
sent 50 mails with 1 second delay between consecutive dispatches. We caused a failure in
daemon3-j1’s sendmail. The poller notices the failure after a configurable time interval
which, for the purposes of this test, is set to 3 seconds. We measured each machine’s maxi-
mum average load and the number of failed smtp sessions against the number of concurrent
clients. We present the results in Fig. 12.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140

M
ax

im
um

 L
oa

d
A

ve
ra

ge
 a

nd
 (

%
)

fa
ile

d
sm

tp
 s

es
si

on
s

Number of concurrent clients

daemon1 load
daemon2 load
daemon3 load

(%) failed smtp sessions

Fig. 12. Maximum load and (%) failed smtp sessions when simulating node failures.

We observe that the network-device handled the internal machine’s failure gracefully,
eliminating it transparently for the clients. The lost smtp sessions were caused mainly
because of the load increase in the backend servers and not due to the network-device.
The load after the internal machine’s failure was balanced evenly among the remaining
nodes.

Stress-Testing: Using our second arrangement (Fig. 11(b)), daemon1 is the gateway load-
sharing network-device, daemon2, daemon3 and daemon3-j1 are in the pool of mx mail-
servers running sendmail and finally, daemon3, daemon2 and daemon2-j1 provide the ldap
service. We generated an smtp-based workload with a variable number of concurrent clients
(4, 8, 16, 32, 64, 128). Each client sends 100 mails with 1 second delay between consecutive
dispatches. Our measurements include the maximum average load on the various machines
(as shown by the UNIX command uptime), the number of created rdr/nat state entries
in PF, the number of failed smtp sessions and finally the mean time for the completion of
a single smtp session. Figures 13, 14(a) and 14(b) show our results.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140

M
ax

im
um

 L
oa

d
A

ve
ra

ge

Number of concurrent clients

daemon1 load
daemon2 load
daemon3 load

Fig. 13. Device (daemon1) and servers (daemon2, daemon3) load graph.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140M
ax

 r
dr

/n
at

 s
ta

te
 c

ou
nt

 &
 fa

ile
d

sm
tp

 s
es

si
on

s

Number of concurrent clients

nat/rdr state count
failed smtp sessions

(a) Lost sessions and rdr/nat state count graph.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 20 40 60 80 100 120 140

M
ea

n
sm

tp
 s

es
si

on
 ti

m
e

(s
ec

)

Number of concurrent clients

(b) Mean smtp session time.

Fig. 14. Graphs for mean smtp session time, lost sessions and rdr/nat state count.

In all cases, the maximum load of daemon1 did not exceed 1.28, while PF state entries
reached the number of 6872 with 128 concurrent clients. The default limit in PF is 10,000

entries. With 64 and 128 concurrent clients, the load of the servers in the two pools
exceeded sendmail’s threshold of service (10 by default in FreeBSD) and there were failed
smtp sessions.

5 Related Work

Since the problems we address are common to a growing number of companies and orga-
nizations [5, 2], there exist competing solutions that are either open source or proprietary.
In the open source arena, a prominent project is the Linux Virtual Server (LVS) [12] whose
goals are ”to build a high-performance and highly available server for Linux using clus-
tering technology, which provides good scalability, reliability and serviceability”. There is
also a port of LVS to FreeBSD. The aforementioned project’s site contains a great deal
of useful information about load balancing and different approaches in dealing with the
issues involved. The Linux High Availability Project [11] provides heartbeat as a core
component that can be used with technologies from LVS to provide high availability solu-
tions in machine clusters. Although the project has the term Linux as part of its name, it
is portable and FreeBSD is a supported platform. Apart from open source solutions, there
are commercial products [1, 3] from a number of vendors that partially attack the problem
we addressed in this paper. Little is known other than their published interface, for the
architectural organization of these products as they remain proprietary.

6 Summary and Future Work

In this paper, we propose a reflective, load-balancing, and highly available architecture
based on commodity hardware and FreeBSD and whose main objective is to deliver very
reliable and 7x24-available Internet services. Our approach is based on farms of computing
nodes that implement services such as http, ldap, smtp, radius, and dns; these nodes are
coordinated by a network-device that acts not only as the nameserver but also as the
coordinator and load-balancing element of the networked resources. We outline our overall
architecture organization and discuss our main design choices. We offer administrative
and coordination support via lbsh, a flexible and effective shell. We finally provide an
experimental evaluation of our prototype system.

By utilizing lbsh’s flexible software architecture, there are a few features we would like
to add to our work as future extensions:

– Incorporate the failover functionality provided by carp and pfsync to the shell’s com-
mands. This configuration takes place outside of the shell environment at present.

– Introduce a privileged mode of operation in lbsh that provides functionality to view/edit
low level PF rules (for use by power users).

– Load/save the device configuration from/to a remote storage, with tftp or sftp.
– Provide a web interface that leverages the shell.
– Implement optimizations in the poller component.
– Explore the possibility of using SNMP in our architecture.

– Add support for CIDR network blocks in lbsh commands.
– Investigate the possibility of adding support to lbsh for other open source packet filters

that have network address manipulation capabilities.
– Introduce different load-balancing algorithms in the distribution of connections to

servers. This is something that requires work at the PF level as well.

Acknowledgments: we are very grateful to Pantelis Papanikolaou and Alexander Bas-
sakidis of OTENET for their active and ongoing support as well as several colleagues at
OTENET for informative discussions. This work was also partially supported by a grant
from the University of Athens Research Foundation.

References

1. Cisco CSM Architecture White Paper. http://www.cisco.com.
2. Cisco White Paper: Business Case for Global Server Load Balancing. http://www.cisco.com.
3. F5 Networks BIG-IP product. http://www.f5.com/products/bigip/.
4. Hot Standby Router Protocol. http://www.ietf.org/rfc/rfc2281.txt.
5. Open 24 Hours: Load Balancing. http://www.f5.com/communication/articles/2005/

article040505.html.
6. Virtual Router Redundancy Protocol. http://www.ietf.org/rfc/rfc3768.txt.
7. Jacek Artymiak. Building Firewalls with OpenBSD and PF. devGuide.net, 2nd edition, 2003.
8. Firewall failover with pfsync and carp. http://www.countersiege.com/doc/pfsync-carp/.
9. Edsger W. Dijkstra. Selected Writings on Computing: A Personal Perspective. Springer-Verlag, New

York, NY, 1982.
10. The FreeBSD Project. http://www.freebsd.org.
11. The Linux High Availability Project. http://www.linux-ha.org/.
12. The Linux Virtual Server Project. http://www.linuxvirtualserver.org/.
13. Christos K.K. Loverdos. The oyster Project. http://www.di.uoa.gr/∼loverdos/oyster, 2005.
14. FreeBSD man pages. http://www.freebsd.org/cgi/man.cgi.
15. The OpenBSD Project. http://www.openbsd.org.
16. PF: The OpenBSD Packet Filter. http://www.openbsd.org/faq/pf/index.html.
17. The Python Programming Language. http://www.python.org.

