Universal Plug and Play: Dead simple or simply
deadly?

Armijn Hemel

April 7, 2006

1 Universal Plug and Play overview

Many devices and programs that exist today have support for the Universal Plug
and Play (UPnP) protocol. The UPnP protocol emerged from within Microsoft
in early 1999 to bring the plug and play concept as found on Windows desktop
machines to the local network. The idea behind UPnP is to enable a user to plug
a device into the local network and it will simply work, whether the device is a
printer, scanner, fileserver or firewall. All configuration is hidden for the user and
instead done automatically by the devices and programs themselves.

The first implementations of UPnP were shipped halfway 2000, Windows ME and
Intel’s open source UPnP SDK for Linux being the first. Windows XP also had
UPnP support built-in since its release in 2001. There are currently implementa-
tions for various operating systems, including Windows, VxWorks, Linux[1][2] and
FreeBSD([1][2]. The UPnP protocol stack uses well-defined Internet standards, such
as HTTP, XML and SOAP.

One of the best known programs that uses UPnP is Microsoft’s MSN Messenger.
Ports that need to be opened on the firewall for voice and video traffic (the “web-
cam” feature) and direct file transfers in MSN Messenger are allocated dynamically
using UPnP. This is done by sending special UPnP commands to a UPnP enabled
firewall if the machine that runs MSN Messenger is behind a firewall or NAT de-
vice and cannot communicate with the other machine directly. These commands
instruct the firewall to forward ports on the firewall’s external interface to ports
that MSN Messenger uses on on the machine on the inside network.

Other programs that use UPnP to open up ports in firewalls are networked games.
Online gaming networks, like Microsoft’s X-Box Live, also heavily rely on UPnP.

Another use is Voice over IP (VoIP). The most frequently used open VoIP protocols
(H323, SIP) have a rather complex flow of network packets with multiple packet
streams flowing back and forth. For example, the SIP protocol stack uses a few
different protocols during the duration of a phonecall. First a connection is set up
between two machines using SIP to negotiate various properties of the connection,
such as the codec which has to be used. If this negotiation is successful a new
connection is set up between the machines in both directions using RTP. The port for
the incoming traffic should be opened in the firewall, otherwise the communication
will be one-way, because RTP packets will simply be dropped’. With UPnP the

LAnd even then it is not guaranteed to work. The RTP protocol encodes the IP address inside
the TCP payload. A normal NAT device will not rewrite the IP address inside the RTP packet.
To do this you will need a special proxy NAT device that knows how to rewrite RTP packets
properly.

incoming port on the firewall could be opened in advance, or opened once the SIP
negotiation has ended and before the RTP streams are set up. There are several
phones with built-in support for UPnP, for example, the snom220 phone (which is
no longer available), although for phones other NAT traversal mechanisms seem to
be more popular these days.

An advantage of using UPnP is that there does not have to be a predefined well-
known port for every protocol. It allows for multiple simultanious connections for
the same program by different users. With dynamically allocated ports user A uses
different ports on the firewall than user B for the same protocol. Ports can be closed
again after usage by the program or device itself, so there should be no resource

hogging.

2 Universal Plug and Play protocol flaws

While UPnP is convenient from a user point of view — programs that need to dy-
namically have ports allocated or need special ports on the firewall to be forwarded
to them to work correctly can do this automatically — there is, unfortunately, a
price to pay. As it is defined in the current standard, UPnP has no default security
mechanism. There is add-on functionality which adds security but devices that im-
plement this functionality are very scarce, if they even exist beyond the prototype
stage.

With the current UPnP protocol there is an implicit trust relationship between all
UPnP capable devices on the same network. Every device is a peer and there is no
policy mechanism in place to check whether or not a device is allowed to make use
of a specific service.

A few simple scripts that implement only a small subset of commands that are used
in UPnP are enough in certain situations to make it possible to expose machines
and services on an internal network to the outside world. This is done by abusing
a device that implements the UPnP Internet Gateway Device profile and forward
ports on the outside interface of the Internet Gateway Device to machines on the
inside network. This makes the internal machine accessible for everyone on the
outside network, for example the Internet. Many ADSL routers and wireless access
points on the market nowadays implement this particular profile and of those devices
many are, in various ways, vulnerable to various “attacks”.

The UPnP Internet Gateway Device specifications specifically mention that it should
be possible to forward ports to internal multicast and broadcast addresses, so de-
vices can share broadcast/multicast streams, for example a TV stream. The benefit
for the sender and receiver is that only one stream has to be sent to the gateway,
which will resend it to the LAN so it can be shared between machines on the LAN,
saving bandwidth. But forwarding ports to broadcast addresses also opens up a
whole new range of attacks. To name two possible targets: the NetBIOS Naming
Service used by Windows network file sharing and the Internet Printing Protocol,
used by many printers and CUPS, both use broadcasting. It is trivial to announce
fake printers on the network and possibly divert printing traffic to off site printers.

Opening and forwarding ports in firewalls via UPnP poses a serious threat. While
at first this might seem to only affect home users and not businesses — no enterprise
range products seem to support UPnP — I tend to think otherwise. It could very
well affect business users as well, for a number of reasons:

e Many (small) businesses are connected via normal “consumer grade” ADSL
lines and have the same ADSL modem as normal home users. For a long time

the default Ethernet ADSL modem that was used by KPN in the Netherlands
was the Alcatel/Thomson Speedtouch 510, which enables UPnP by default. In
the web interface of this device there is no possibility to disable UPnP. Users
have to use the commandline interface to shut off UPnP, which is beyond the
technical capability of many users.

e Wireless access points and routers that are primarily meant for home use are
also frequently used inside (small) company networks (“SOHO”). The Linksys
brand of access points and routers is especially popular in this segment of the
market. War driving has shown that many administrators do not properly
configure wireless access points and routers, which makes it likely that UPnP
is also enabled on those networks.

e Many, if not most, attacks on company networks originate from normal con-
sumer lines (“zombie networks” come to mind). The fact that millions of
UPnP enabled routers were sold makes this something that should not be
ignored.

A threat to businesses is that services that should not be exposed to the outside,
such as internal DNS or NFS/SMB file servers can now easily be opened up to the
whole world. These fileservers often contain sensitive and important information.

A firewall cannot be trusted to keep out the bad guys anymore (even though relying
on just a firewall is bad anyway), making it as likely to be hacked as when the
machine is hooked up to the Internet directly. Having good host security is (and
always has been) important and is often overlooked.

So far it seems that there has been not much research in the area of abusing the port
mapping feature of UPnP Internet gateway devices. It could be that many people
do not see it as a threat, or that this hack is simply too obvious that no one thinks
it is good enough to exploit it. However, many of the most effective cracks are done
via simple holes. My hopes are that this paper can somehow fuel the discussion for
integrated security in SOHO and home user networking equipment.

3 Design of UPnP

The UPnP protocols are developed by the UPnP Forum[4], the UPnP standardiza-
tion committee. It oversees the development of new profiles and standards. In this
section I will give a short description of how UPnP is designed. A more thorough
description can be found in the book “UPnP: Design by Example” [15].

3.1 Profiles

Central to the concept of UPnP are profiles. A machine or a piece of software can
implement one or more profiles and provide services accordingly. The UPnP Forum
has defined various default profiles, including profiles for printers, HVAC (Heating,
Ventilating, and Air-Conditioning) systems and so on. The first profile that was
certified was the Internet Gateway Device profile. Devices which implement the
Internet Gateway Device profile are meant to provide access to WLAN connections,
such as the Internet. Devices that implement the Internet Gateway Device profile
are routers, wireless access points and ADSL modems. In this paper the focus will
be on devices that implement this profile.

In the UPnP documentation devices that can provide a service are called “control
points”. Machines or programs that make use of these control points are referred

to as “devices”. The role a machine has can be different per context. For example,
a machine that is normally a “control point” (for example a file server) can be a
“device” if it needs to have ports opened up in the firewall dynamically. The terms
that are used in UPnP documentation are a bit ambiguous.

A control point can implement more than one profile. Many profiles only serve
as containers for other profiles, or as an abstraction for other profiles, similar to
interfaces or abstract classes in object oriented programming languages. These
profiles are commonly called “subprofiles”. The Internet Gateway Device profile
is a container for a few other profiles. It is mandatory for the Internet Gateway
Device profile to implement WANDevice, which in turn has to have at least one
WANConnection. A control point which implements Internet Gateway Device can
also implement other subprofiles, such as LANDevice.

The WANConnection profile is an example of an abstraction. It is never directly
implemented itself, but it is “instantiated” by implementing WANPPPConnection,
which is often used for DSL routers, or WANIPConnection, common for normal
routers or wireless gateways.

3.2 Protocol design

In UPnP there are a few steps that every device goes through, or can go through.
Some of these steps are mandatory, others are used depending on what role a device
has.

3.2.1 Step 0: Addressing

The first (or actually, zeroth) step in UPnP is addressing. This step is performed
when a device is connected to a network. If it cannot obtain an IP address via
DHCP, because a DHCP server is absent, it will assign an IP address to itself
and try to determine if the IP address is unused. The address is chosen from the
169.254/16 range. If the address is in use, the device will try to assign another
IP address until it has obtained an IP address that it can use. This is often called
“auto-addressing”. The underlying thought is that this way devices can organise
the network themselves without having to rely on a central control point, like a
DHCP server, or a system administrator that assigns IP addresses.

This “auto-addressing” technique is not unique to UPnP. Other protocols, such as
IETF ZeroConf, use similar techniques. Some Linux distributions, like Fedora Core
3 and Fedora Core 4, also include default routes for the 169.254/16 network in
their network configuration.

Even in a network which uses a DHCP server some UPnP devices will sometimes
still send packets using one of the IP addresses in the 169.254/16 range. The
Alcatel Speedtouch 510 ADSL router sends UPnP notification messages (see step
1) using an IP address in this range.

3.2.2 Step 1: Discovery

When a machine joins a network and wants to know what UPnP services are avail-
able on the network, it sends out a discovery message to 239.255.255.250 on port
1900 via UDP. This message contains a header, similar to a HTTP request:

M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900

MAN: ssdp:discover
MX: 10
ST: ssdp:all

All control points are required to respond to this message by sending back a similar
message via UDP unicasting back to the device, announcing which UPnP profiles
the control point implements. For every profile it implements one message is sent:

HTTP/1.1 200 OK

CACHE-CONTROL :max-age=1800

EXT:

LOCATION:http://10.0.0.138:80/IGD.xml

SERVER: SpeedTouch 510 4.0.0.9.0 UPnP/1.0 (DG233B00011961)
ST:urn:schemas-upnp-org:service: WANPPPConnection:1
USN:uuid:UPnP-SpeedTouch510: :urn:schemas-upnp-org:service: WANPPPConnection:1

The above is a slightly edited response that is sent by an Alcatel/ Thomson Speed-
touch ADSL modem. Some implementations of the UPnP stack do not seem to
send responses back at all.

The response message contains a header called LOCATION, which is a URL where
a file in XML format can be downloaded which describes the services that the
control point implements. There is no default location for this file. In some control
points, such as the OvisLink MU-5000FS, a Linux/Samba based network storage
device (also available from other vendors), the LOCATION header even differs between
reboots as the port on where the webserver runs is dynamically assigned.

At a regular interval control points have to send a message to announce their ser-
vices. A notification message is the same as a response message to a discovery, but
they are sent to the UPnP broadcast address (239.255.255.250) on port 1900 via
UDP.

Also, the header ST is replaced by the header NT, but with similar values.

3.2.3 Step 2: Description

Every profile offers a description of itself and the services it offers and makes this
available via XML. The XML file can be found at the URL in the LOCATION header
from the discovery stage.

3.2.4 Step 3: Control

The third step in the protocol is called “control”, which means that a device can
ask a control point to request a service on the client’s behalf. Requesting a service
is done by sending a SOAP request to the so called “control URL” of the control
point, with the right parameters. The control URL for a specific profile can be
found inside the <service> tag in the XML file found at the URL in the LOCATION
header. As an example the <service> tag from the Thomson Speedtouch 510 for
the WANPPPConnection profile looks like this:

<service>
<serviceType>urn:schemas-upnp-org:service:WANPPPConnection: 1</serviceType>
<servicelId>urn:upnp-org:serviceld:wanpppc:pppoa</serviceld>
<controlURL>/upnp/control/wanpppcpppoa</controlURL>
<eventSubURL>/upnp/event/wanpppcpppoa</eventSubURL>

<SCPDURL>/WANPPPConnection.xml</SCPDURL>
</service>

For sending SOAP requests only controlURL is necessary. The eventSubURL is used
in the next step. Which actions can be performed depends on the profile. The URL
found at SCPDURL is the so called “URL for service description” and it describes
which SOAP requests can be performed and what the so-called state variables are.

SOAP is a protocol that runs over HT'TP and uses XML to describe “function
calls” to a server and return results from those calls. SOAP is mainly used to
make use of web based services. For every major programming language libraries
are available that can be used to implement SOAP requests and process SOAP

responses. Throughout this paper there are various Python code snippets. The
SOAP library that is used is SOAPpy][3].

One of the actions that can be performed on a control point that implements the
WANPPPConnection profile is GetExternalIPAddress, which is used to get the ex-
ternal IP address of the device:

#!/usr/bin/python

import os
from SOAPpy import *

"endpoint" is the control URL for WANPPPConnection on a Speedtouch 510

endpoint = "http://10.0.0.138/upnp/control/wanpppcpppoa"
namespace = "urn:schemas-upnp-org:service:WANPPPConnection:1"
soapaction = "urn:schemas-upnp-org:service:WANPPPConnection:1#GetExternalIPAddress"

server = SOAPProxy(endpoint, namespace)
print "external IP", server._sa(soapaction).GetExternalIPAddress()

Adding a port mapping for the machine located at the IP address 10.0.0.151 can
be done with the following code:

soapaction2 = "urn:schemas-upnp-org:service:WANPPPConnection:1#AddPortMapping"
server._sa(soapaction2) .AddPortMapping(NewRemoteHost="",
NewExternalPort=8080,

NewProtocol="TCP",

NewInternalPort=80,
NewInternalClient="10.0.0.151",

NewEnabled=1,
NewPortMappingDescription="internal webserver",
NewLeaseDuration=0)

A portmapping can be deleted with a similar SOAP action:

soapaction3 = "urn:schemas-upnp-org:service:WANPPPConnection: 1#DeletePortMapping"
server._sa(soapaction3) .DeletePortMapping(NewRemoteHost="",
NewExternalPort=5666,

NewProtocol="TCP")

3.2.5 Step 4: Eventing

Control points keep state, which devices can read out. A device can register with
the control point to receive event messages whenever the value of a so called state
variable has changed. It does so by sending a request to the control point:

SUBSCRIBE /upnp/event/wanpppcpppoa HTTP/1.1
Host: 10.0.0.138

Callback: <http://10.0.0.150:5000/notify>
Timeout: Second-1800

NT: upnp:event

After a device has registered with a control point it will first receive a message with
the current state of all evented messages and it will receive updates whenever the
state of a variable changes. These messages will be sent to all the URLs that are
present in the Callback header.

3.2.6 Step 5: Presentation

Presentation is about how a device “presents” itself to normal human beings. It
nearly always comes down to being able to control the UPnP device via a webin-
terface.

4 UPnP security attacks

UPnP is not a very complex protocol, but it is far reaching, especially when port
mappings can be done via UPnP. Implementation errors of the UPnP protocol stack
in devices, and also omissions in the specifications, enable an attacker to do quite
severe things, including hijacking of network traffic, anonymous proxying of network
traffic and exposure of trusted machines to untrusted external networks.

This section describes a range of attacks which are possible with UPnP in general,
or with specific implementations of UPnP. These attacks all originate from within
the LAN, where a user or malicious program possibly already has full access to
some or all machines in the LAN. Tunnels to the outside are easily created in such
a setup. It can be argued that because access to the internal LAN is a prerequisite
for everything described in this paper these attacks should not be regarded as real
attacks. However, I think that the ease with which a firewall can be completely
reconfigured makes it a big enough threat:

e [t takes no special privileges to reconfigure a UPnP-enabled firewall.

e Changes to the firewall done via UPnP are often persistent across reboots of
the Internet Gateway Device and not always easy to remove.

e A computer that has been taken over by a virus, spyware or cracker is rela-
tively easy to detect, but a reconfigured router is a lot harder to find, especially
when the router is complying with all standards it implements.

4.1 Exposing internal machines to outside networks

The portmapping feature described earlier is convenient if you want to have ports
forwarded to your own machine, but it can also be abused to forward ports on

the firewall to other machines. Any host on the internal network can ask for any
portmapping it desires, so the machine on 10.0.0.152 could execute the following
Python code to send a SOAP packet to the Internet Gateway Device to ask for a
portforward to 10.0.0.151, without 10.0.0.151 even knowing about it:

soapaction2 = "urn:schemas-upnp-org:service:WANPPPConnection:1#AddPortMapping"

server._sa(soapaction2) .AddPortMapping(NewRemoteHost="",
NewExternalPort=22,
NewProtocol="TCP",
NewInternalPort=22,
NewInternalClient="10.0.0.151",
NewEnabled=1,
NewPortMappingDescription="ev1l h4x0r",
NewLeaseDuration=0)

Telco/LAN Houler//u AddportMappjng on port 22

10.0.0.152

It is up to the Internet Gateway Device to fullfill (or refuse) these requests. Nearly
all Internet Gateway Device will happily comply with such requests.

In the specification the specifications are vague about that an Internet Gateway
Device should honour requests for portforwardings other than to the machine that
made the request.

On page 12 of the specification of the WANIPConnection profile (UPnP_IGD_WANIPConnection
1.0.pdf, available from the website of the UPnP forum[4]) it says:

“This variable represents the IP address or DNS host name of an internal
client (on the residential LAN).”

On page 13 of that same document it says:

“Fach 8-tuple configures NAT to listen for packets on the external in-
terface of the WANConnectionDevice on behalf of a specific client and
dynamically forward connection requests to that client.”

From the context it is not entirely clear if “that client” should always be the request-
ing device. It should be clear that this is a security bug and that this behaviour
should explicitely be denied in the specification.

The specifications mention that it should be possible to set InternalClient to
255.255.255.255, a broadcasting address.

In some of the implementations (Alcatel Speedtouch 510) that were examined this
particular behaviour could be triggered.

4.2 Using UPnP to create proxies and hijack ports

At least one implementation of the Internet Gateway Device profile allows any-
one on the internal network to set the InternalClient parameter as used by the
AddPortMapping SOAP function to any machine on the Internet. This implemen-
tation was developed by Broadcom for their router platform. It can be found in
certain revisions of the Linksys WRT54G(S) and a lot of other Linux-based routers
and access points (the hardware list on the OpenWrt Wiki[6] gives a good indication
which devices are based on the platforms Broadcom makes).

In this particular implementation the Internet Gateway Device does not check
whether or not the InternalClient parameter really is a machine on the LAN.
The Internet Gateway Device, will happily perform Network Address Translation
(NAT) on the incoming packets to InternalClient, even if InternalClient is
located on an external network. The result is that the headers of the incoming
packets will be rewritten and resent from the router.

This means that ports on the external interface of the Internet Gateway Device can
be used to forward traffic to other machines that are also on the external interface.
An attacker can exploit this bug to have his own traffic routed through the Internet
Gateway Device of the victim to masquerade his own traffic and thus create his
own onion routing system|[7][8], but without the permission or knowledge (logging
is turned off by default) of the owner of the router.

4.2.1 Case: make your own onion router

With a small bit of hacking it is possible to forward ports on the external interface
of an ADSL router, that in itself is not directly vulnerable to the attack described
above, to another host on the Internet, where it will appear as if all traffic is coming
from the ADSL router. This can be done as long as there is some router in the
network that is vulnerable.

The machines involved are:

e Alcatel/Thomson Speedtouch ADSL router (using PPPoA), internal IP ad-
dress 10.0.0.138

e machine A, IP address 10.0.0.151

e Linksys WRT54G, external TP address 10.0.0.152 and internal IP address
192.168.1.1

e machine B, IP address 192.168.1.100

A\ 2
www.sane.nl ..

2
!;uier
~I-"7>~. AddPortMapping

on port 22 to
/' www.sane.nl:22

Telco/LAN!

The hack works as follows:

e Let machine A ask the Speedtouch to forward all traffic on port 22 on the
external interface to port 22 on the Linksys router.

e Let machine B exploit the bug in the UPnP implementation on the Linksys
router and let the router forward port 22 on the external interface to port 22
on a random host on the Internet (say www.sane.nl)

This way, if you connect to the ADSL router on port 22 from the Internet, you will
be routed to port 22 on www.sane.nl. Because all traffic will go through two NAT
devices (namely the Linksys WRT54G and the ADSL router) it will appear as if all
traffic comes from the ADSL router. The hack can be made a bit simpler if machine
B asks the ADSL router to make the portforward instead of machine A.

Of course, if the only link between the Internet and the inside network is the
WRT54G, the hack is in fact a lot simpler. In the Netherlands this situation is
not very common, since the WRT54G has no built-in ADSL modem.

More serious hacks are possible with this bug. For example, this hole could be
exploited to hijack port 25 to capture someone’s mail if a mail server is running
behind the Internet Gateway Device and port 25 on the external interface is for-
warded to the internal mailserver. Hijacking can be done by first deleting the exist-
ing portmapping for port 25 from the Internet Gateway Device and then creating
a new mapping to an external machine in the same way as is described above.

In a similar way you could redirect port 80 to another machine, and deface a website
without having to break into the webserver, or divert traffic and use it for phishing.

This bug was reported to Linksys in early february of 2006. Linksys found the
bug, but a replacement firmware was not yet available before the deadline for this
paper. Other vendors haven'’t fixed it yet. The sad truth is that this bug apparently
was already known by at least one vendor. In the GPL sources tarball from US
Robotics in the file ipt.c, dated March 1 2005, there are fixes from US Robotics
which prevent this attack from happening (and as a side effect also reject forwards
to the broadcast address, making the device strictly spoken incompliant with the

Internet Gateway Device specification!), but for some reason these changes never
made it upstream to Broadcom, or were never incorporated by Broadcom.

Broadcom was notified of the problem on March 3, but no reply was given before
the deadline for this paper expired.

4.3 Using UPnP to create random chaos

Aside from adding a portmapping other actions can be performed on an Internet
Gateway Device, including deleting portmappings. Deleting existing portmappings
can disrupt the correct working of programs.

In this paper the focus is on the Internet Gateway Device profile in general and the
WANIPConnectionand WANPPPConnection profiles in particular. There are probably
a lot of other opportunities for malice with the other standard profiles, but I have
not tried to hack them, because of lack of devices.

Hacks that come to mind are abusing the LANDevice profile and especially the
LANHostConfigManagement subprofile to shutdown routers or inject false router
or DNS information or adding bogus printers. Devices that implement these de-
vices seem to be a bit rarer than devices that implement the WANIPConnection or
WANPPPConnection profiles. Even though both subprofiles are both part of the In-
ternet Gateway Device profile, not all the subprofiles of the LANDevice subprofile not
have to be implemented, whereas it is mandatory to implement WANIPConnection
or WANIPConnection.

More spectacular hacks would be to abuse HVAC controls with UPnP (these devices
are rarely ever seen in the wild, although there is a UPnP profile for), or remotely
control IP cameras, of which some seem to be using the UPnP AV profile.

5 Other UPnP hacks

UPnP has been in the news a few times in the context of hacking ([10], [11], [14],
mainly in December 2001 when several worms took advantage of the UPnP ports on
Windows client machines via a buffer overflow[12]. The advice for countering this
threat was to turn off UPnP services on the client machines. Another hack was a
Denial of Service Attack on a machine, which would be swamped with notification
messages if other machines sent out tons of fake discovery messages[13].

6 The UPnP Device Security profile

Even though by default there is no security in UPnP that doesn’t mean that it
was completely ignored by the UPnP forum. In fact, a security mechanism, that
devices can implement was developed. There are two profiles, SecurityConsole
and DeviceSecurity. A device that implements the SecurityConsole serves as
some sort of central hub were other devices can request a security policy. The
system is based on PKI.

None of the devices that were tested implement the standard security profile that is
available in the UPnP specifications, or at least, don’t enable it. The sourcecode for
some of the Asus machines (such as the WL500g) actually contains some code for
the DeviceSecurity profile, but it doesn’t seem to be used. An extensive search
on the Internet also didn’t come up with any devices that use any of these profiles.

Because no devices implement it, it means that there is currently no fine grained
solution available that only allows for certain devices or applications to request
services.

7 Counter measures

It is obvious that on many (business) networks UPnP should not be allowed. There
are various ways you can do this, depending on whether or not you only want to
prevent others from reaching your LAN from the outside using methods as described
above, or to completely eradicate UPnP usage on your LAN.

7.1 Disabling UPnP portmapping only

The most effective solution for the problems described in this paper is to simply
disable UPnP on all Internet Gateway Devices in your network. On some devices,
such as the Linksys WRT54G, this can be done via the web interface. On other
devices, such as the Alcatel/ Thomson Speedtouch 510 this can only be done via the
commandline interface. Disabling the UPnP functionalitity on an Internet Gateway
Device does not disrupt other the working of other UPnP devices on the local LAN.

7.2 Disabling UPnP completely

If you want to disable any form of UPnP functionality on your network some drastic
measures have to be taken. This is not an easy task and maybe it’s not even possible.

7.2.1 Step 0: Addressing

Even if you only give known clients an IP address on your network with DHCP,
UPnP auto-addressing might be used to circumvent this mechanism. All machines
should be attached to a router directly, which can be configured to block certain
addresses. No direct connection between UPnP enabled machines, for example via
switches, should be allowed.

All TP addresses in the 169.254/16 range should be null-routed by the router. It
should be noted that this might also disrupt the correct working of ZeroConf based
applications, such as Apple’s “Bonjour”.

On Wireless Access Points an extra step can be taken, namely MAC address control
and not allowing unknown devices to associate with an access point.

7.2.2 Step 1: Discovery

Discovery messages are sent to a well-known address and port, namely port 1900 on
239.255.255.250 via UDP. Specifically null-routing this port and address combi-
nation will prevent control points from receiving discovery messages from devices.

To disable notification the same step has to be taken as for discovery: null-route
UDP packets to port 1900 on 239.255.255.250.

7.2.3 Step 2: Description & step 3: Control

Disabling discovery and notification will not take away the possibility to download
the description XML file and invoke remote procedure calls via SOAP on a control
point. Since every control point defines for itself where the description file is and
to which URL SOAP requests have to be sent it becomes very awkward, if not
impossible to filter.

7.2.4 Step 4: Eventing

Like the previous steps, it is hard to filter out eventing messages, since each control
point defines for itself where devices should describe. Every device defines for itself
where events should be sent to using the Callback header.

7.2.5 Step 5: Presentation

The presentation step (the administrative webinterface) can’t be used to issue com-
mands automatically and is harmless from a UPnP point of view. There is therefore
no need to block it. Of course, the webinterface itself should be protected as well.

8 Fixing UPnP

This paper has demonstrated that there are problems with UPnP which make it
possible for an attacker to abuse a whole network in various ways in a fairly easy
way. The only solution to fix these problems is a complete redesign of the protocol
with security in mind, for which the standard UPnP “Device Security” profile seems
to be a fairly good basis. How well this would work in a home network, where there
is often an administrator without the necessary technical knowledge, remains to be
seen.

Vendors can improve UPnP security right now by making several fairly straightfor-
ward adaptions to their UPnP implementations, without making any of the intended
uses of UPnP impossible. Some adaptions would be:

e Do not allow “privileged ports” (below 1024) to be forwarded via UPnP. No
application that uses UPnP needs privileged ports. If a particular program
does need a privileged port and wants to have it forwarded via UPnP, you
probably do not need that application. Legitimate forwardings of privileged
ports should be done manually, for example via the webinterface.

e Check if the InternalMachine parameter really represents an internal ma-
chine. This seems to be done by some vendors, but not all.

e Restrict forwarding to the internal machine itself. For broadcast and multicast
addresses use a caching proxy instead (if possible).

e Let devices check for firmware updates and enforce these to be installed, to
make sure the latest updates are installed.

Access control could be an effective way to reduce hacks, using the following coun-
termeasures, all slightly different:

e Only allow machines that are known by the DHCP server and/or DNS to
make UPnP requests.

e Do not allow forwards to certain machines on the inside network (blacklisting).

Only allow forwards to certain machines on the inside network (whitelisting).

Only allow UPnP requests from authorized machines on the inside network
(whitelisting).

Do not allow UPnP requests from unauthorized machines on the inside net-
work (blacklisting).

The adaptions given above will not take away all problems — a trojaned machine
which is allowed to make UPnP requests can still have ports forwarded to itself
and thus open up the network for outsiders — and it will certainly require more
configuration than zero, and in some cases it will make the device not UPnP com-
pliant (although the UPnP specifications are unclear about when a device is really
compliant). However, the adaptions will take away a part of the threats that are
described in this paper, without having to make changes to current implementations
and sacrificing any usability.

9 IETF Zeroconf

A protocol similar to UPnP was developed by the IETF and is called “Zerocont”[9].
It was developed to provide ad-hoc networking and various services, in a similar way
as UPnP. The protocol originated from within Apple. It has recently picked up a
bit of support from vendors. Apple is heavily pushing its own Zeroconf implemen-
tation called “Bonjour” (formerly known as “Rendezvous”). The GNOME project
is thinking about adding a Zeroconf implementation to the GNOME desktop envi-
ronment, while KDE already implemented a large part of Zeroconf for KDE 3.4.

Zeroconf also uses auto-addressing, but it works a bit differently. The precise work-
ings are beyond the scope of this paper. Like with UPnP portmapings can be done.
This is done via the NAT-PMP protocol. The NAT-PMP protocol does not allow a
device to ask port mappings for another device. However, a possible hole exists in
the protocol. The protocol defines that if a portmapping is requested for a certain
port and protocol (TCP or UDP), the NAT gateway has to reserve the companion
port for the other protocol for the client as well. This has not been tested, due to
lack of devices to test with.

10 Convenience versus security

The real issue with UPnP and related technologies, such as IETF Zeroconf, is that
its basic concepts are orthogonal to network security. With UPnP and Zeroconf
devices on a network are peers that organize the network themselves using auto-
addressing and auto-configuration, without needing an administrator to configure
anything: there is in fact zero configuration needed.

It is by definition impossible to implement security in this model without sacrific-
ing the “zero” property, because every way of enforcing even the slightest form of
security requires configuration. For example, if a trust relationship has to be set
up between two devices, at least one of the devices has to be configured: a router
has to allow traffic on the network from the other device, or a public key has to be
added from one device to another.

The question that should be asked is how far we want to go with this type of
technology. The core issue is what is more important, security or convenience, and
also when this is more important.

11 Conclusion

Zero configuration is not going away anytime soon. Quite the opposite seems to
be true. More and more devices are supporting UPnP, or will support its IETF
counterpart, Zeroconf. This paper has shown there are serious problems with UPnP,
the protocol that is most widespread, without any good solutions that don’t involve
disabling the protocol, implementing a lot of workarounds, or completely redesigning
the protocol.

A Tested Internet Gateway Devices

For this paper as many devices and firmware revisions as possible were tested. Not
all devices actually do forwarding or Network Address Translation (for example,
the Asus WL-HDD which was tested is just an access point), but all of the devices
tested here implement the Internet Gateway Device. Per vendor and per device the
following are described:

e model: device model, including hardware revision, if any
e firmware revision
e device: type of device

e NAT bug: is this device vulnerable to the InternalMachine attack as de-
scribed in this paper?

A.1 Asus
A.2 WL-HDD

model firmware | device NAT bug
WL-HDD 2.5 wireless access point and file server | yes

The Asus WL-HDD is a Linux based wireless access point, with room for a laptop
harddisk and built-in Windows fileserver using Samba. Even though the WL-HDD
cannot do NAT — it is used as a bridge — it does implement the Internet Gateway
Device and WANIPConnection profiles. The device allows for port mappings, but
these are of no practical use. However, there is a bug in the implementation. If
a portmapping is requested, the port that is in the ExternalPort in the SOAP
request will be filtered by the firewall, even when there is already a service running
on that port, such as the webinterface for configuration or Samba. The firewall rule
will be deleted when the device is rebooted. Still, it is a simple way to lock users
temporarily out of the system.

It is interesting to note that this device uses the UPnP stack from the same vendor
as the Linksys WRT54G.

A.3 Linksys

A.3.1 WRT54G and WRT54GS

model firmware | device NAT bug
WRT54G v2.2 3.03.9 | wireless gateway /router | yes
WRT54G v2.2 4.20.7 | wireless gateway /router | yes
WRT54G v2.2 4.20.8 | wireless gateway /router | yes
WRT54GS v1.0 2.09.1 | wireless gateway/router | yes
WRT54GS v1.0 4.70.6 | wireless gateway /router | yes

The WRT54G is a wireless gateway with built-in router, which is based on Linux?
and uses the Broadcom UPnP implementation. This implementation — at least in all
versions of the firmware that were tested — is flawed because the InternalMachine
parameter to AddPortMapping is not checked before a port mapping is established.
If InternalMachine points to a machine that’s not on the internal network, IP
packets will still go through NAT and have their IP header rewritten, so it seems
all traffic comes from the router.

Linksys was notified in early february and acknowledged the bug. A new firmware
with a fix was not yet publicly available before the deadline for this paper.

A.3.2 BEFW11S54

model firmware | device NAT bug
BEFW1154 v4 1.45.3 | wireless gateway/router | no
BEFW1154 v4 1.52.02 | wireless gateway/router | no

The BEFW11S4 displays some interesting behaviour. First if all, the scripts as
described in this paper do not seem to work at all. Even requesting a “normal”
portmapping (to the requesting machine itself) does not work.

When a list of existing portmappings is asked with the GetGenericPortMappingEntry
SOAP action, it only returns one portmapping over and over again, namely the
mapping that’s already preset in the device for FTP. No matter wat value of the
NewPortMappingIndex to GetGenericPortMappingEntry is taken, the result is al-
ways the same.

Another bug with the same SOAP action only manifests itself in the 1.45.3 firmware,
but not in the 1.52.0.2 firmware. When in a short period of time (several seconds)
a large list of portmappings is requested, the router overloads and drops all connec-
tions to the outside, but the internal switch module still seems to work. Ethereal
shows TCP retransmissions, TCP out of order and duplicate ACKs packets.

import os
from SOAPpy import *

endpoint = "http://192.168.1.1:2468/WANIPConnection"
soapaction = "urn:schemas-upnp-org:service:WANIPConnection: 1#GetGenericPortMappingEntry"

i=0

2This is not true anymore. Starting with hardware revision 5 of the WRT54G Linksys has
chosen to use VxWorks. The motherboard has much less memory and RAM than previous versions.
However, a new version, the WRT54GL, is nearly identical to previous versions, and is targeted
for people who want to modify their router.

bound=600
while (i<bound) :
print "i: ", i,
server._sa(soapaction) .GetGenericPortMappingEntry (NewPortMappingIndex=i)
i=i+l

A.4 Alcatel/Thomson

A.4.1 Speedtouch 510

model firmware | device NAT bug
Speedtouch 510 | 4.0.0.9.0 | ADSL modem/router | no

This device has been the default Ethernet ADSL modem for a long time for KPN
(the major Dutch telecom company) and all its ISPs (Planet Internet, HetNet,
XS4ALL, HCCnet). The Speedtouch 510 has UPnP on by default and there is no
option in the webbased administrative interface to disable UPnP. This device does
not suffer from the InternalMachine parameter bug like the Linksys WRT54G and
works correctly in that sense.

With this device UPnP can still be used to expose ports to machines on the internal
network to outside machines.

A.5 NetGear

A.5.1 WPN824

model firmware | device NAT bug
WPN824 vl 1.0.3 | wireless router | no
WPN824 v1 2.0.11 | wireless router | no
WPN824 vl 2.0.15 | wireless router | no

The WPN824 is a MIMO 802.11, with speeds up to 108 Mbps, in theory, for wireless
connections. It is not vulnerable to the InternalMachine attack. However, this
device allows UPnP requests to open ports to machines on the internal network.

In older revisions of the firmware there apparently were problems with UPnP. The
release notes for the 2.0.15 firmware read: “Fixed that UPnP packets caused the
router to freeze.”

A.6 ZyXEL

A.6.1 P-335WT

model firmware | device NAT bug
P-335WT | V3.60(JO.3) | wireless router | yes

The P-335WT was the only machine that was tested which has UPnP turned off
by default. The administrator of this device has to explicitely enable UPnP. The
device has an interesting configuration option, namely “Allow users to make con-
figuration changes through UPnP”. If this option is not checked, it will return
error code 501 (“server error”) whenever there is a request for AddPortMapping or
DeletePortMapping.

The device is vulnerable for the NAT bug, but only in certain circumstances. When

the device was connected to a 10.0.0.0/8 network with its external interface it
was not possible to make forwards to other machines on that networks, but it was
possible to make forwards to machines on the Internet. ZyXEL was informed one
day before the deadline for this paper and could not comment on such short notice.

References

[1] http://upnp.sourceforge.net/

[2] http://linux-igd.sourceforge.net/

[3] http://pywebsvcs.sourceforge.net/

[4] http://www.upnp.org/

[5] http://www.upnp-ic.org/

[6] http://wiki.openwrt.org/TableOfHardware

[7] http://www.onion-router.net/

[8] http://tor.eff.org/

[9] http://www.zeroconf.org/

[10] http://www.sans.org/resources/malwarefaq/win_upnp.php

[11] http://www.schneier.com/crypto-gram-0201.html

[12] http://cve.mitre.org/cgi-bin/cvename. cgi?name=CVE-2001-0876
[13] http://cve.mitre.org/cgi-bin/cvename. cgi?name=CVE-2001-0877

[14] http://www.vnunet.com/vnunet/news/2146374/
hackers-exploit-windows-flaw

[15] M. Jeronimo and Jack Weast, UPnP Design by Example, Intel Press, ISBN
0-9717861-1-9

