Evaluating cfengine’s immunity model
of site maintenance

Mark Burgess

Oslo College

1 Introduction

The immunity model of system maintenance draws its name frenimmune systems of
vertebrate organisms. The idea contends that all evohdrggetscale cooperative organ-
isms (animals, groups, societies) develop self-protgcirb-systems (immune and repair
systems, police and emergency services) which try to keegetbrganisms in some kind
of balance. Without such systems, organisms would quickhsh due to random decay
and crime. Computers operating systems are artificial asgas) which work on the same
cooperative principles as other organisms, but they haga designed rather than having
evolved. They lack basic protecting systems, or immuneairegystems. The immunity
model attempts to redress this imbalance by providing aerxounterforce to the forces
of random or criminal attack on system integrity. One defithesideal (desired) state for
a computer system and agents (like immunity/repair cellakensure that no dangerous
deviations from that state are allowed to grow.

The immunity model uses a principle of convergence to swatctand off repair and
garbage collection mechanisms. When the system is in itd &ate, the immune system
becomes inert. When the system deviates from the ideal #t@&nmune system guaran-
tees to bring it only closer to that state, i.e. the state efsystem is never made worse by
the agents. This is similar in spirit to danger models ofeferate immunity[1].

Cfengine is an agent/language framework for implementiegiutomatic management
of large or small system installations with the immunity rebdt uses the idea of an expert
software agent to perform automatic maintenance on eadhimasUnix or NT cluster.
Cfengine is suitable for site-wide management; it can bel digelarge scale cloning of
hosts, or for individual specialization, with any degreegyadnularity. A single configura-
tion file, consisting of a specialized, descriptive langrigused to describe the ideal state
of groups and classes of hosts on the network.

The purpose of this paper is to take a critical review of theeesgs of the immunity mod-
el computer management. What are the criteria for judgingehanism for maintenance?
What aspects of system administration are not covered snntiidel? Can the immunity
model be judged to be superior or inferior to other approat¢besystem management?

2 Analytical system administration

In spite of USENIX/SAGE efforts, system administration @ get a continuing research
dialog, but more a cycle of reinvention of one-off solutioH®ne is to avoid such reinven-
tion and advance the state of the field, more introspectidrcaticism of the technologies
at hand is needed.

The belief that general principles and tools will solve pesbs at diverse locations has
been slow to emerge in the field. System administrators are imolined to put together
some scripts of their own than trust someone else’s softwatds is possibly because
previous software has imposed unreasonable limitationsnplicit policies on its users.

Actual models of system administration have been all butexistent. Many users have
learned to quickly dispose of vendor provided tools and firm@homogeneous solutions.

There is a few exceptions to this mode of thinking. The firs$ warhaps the introduc-
tion of the PERL scripting language, which eliminated mahyhe problems associated
with incompatible versions of the Unix shell commands aridvedd portable scripts to
be written. Cfengine also falls into this category, placpartability and uniformity be-
fore detailed functionality. Other systems like Tivoli leataken a brute force approach
to the problems of inhomogeneity and widespread appliitghily providing an elaborate
management superstructure for traditional scripts. Altftothese three example tools are
quite different, with different target audiences, theiigdictions overlap and it is natural
to consider their suitability for the tasks of system adstirition.

As a contribution to an emerging dialogue, the present pagiempts a partial ap-
praisal of the author’s own contribution to the field: the iomity model and its test-
implementation cfengine. Cfengine sets itself apart frdheptools by building on specif-
ic principles, rather than leaving every detail to the Sevipiter. It absorbs a significant
amount of frequently used code back into the language aterf

In order to evaluate cfengine’s performance or value ast@syadministration paradig-
m, this paper is divided into two parts: an evaluation of thiegples of operation, and an
evaluation of the tool itself. It is the principles which afenduring importance. Cfengine
is simply a proof-of-principle implementation, constredtoften on borrowed time, and
while it incorporates much if the required technology, islmaany cosmetic faults.

3 Model and principles

Evaluating models and principles of system administrafioan objectively scientific way,
is a difficult problem. Often principles can only be shown twé theoretically desirable
qualities, and evidence can be presented in favour of omag#ie success of strategies
based on them. System administration has its own specitadbs: as a strongly social
phenomenon, dealing with the behaviour of communitiegsists empirical analysis. Ex-
perimental verification of ideas is a practical impossipilithe conditions under which
measurements are made are constantly changing, makingtistdtrepeatability a pipe
dream. The data one might collect to substantiate a clainu@likely to be statistically
significant or controllable.

An evaluation of the issues specific to the immunity modelddigonally awkward
since it overlaps with issues common to other potential fsoldased on automation. If
one were to pose the question, why is the immunity model btea some other model,
it would have to be based on a very incomplete analysis of théealitself, since much of
the model is based on the idea of automation, which is commsewveral approaches. The
specific details which are particular to the immunity mo@gfre:

e Convergence: every action should bring the system closis tdeal configuration.
Nothing should ever get worse.

e Distributed responsibility: each host has the resporigilfdr its own health. Human
involvement and notification is avoided as far as possible.

e Competition rather than rigidity: provide counter-fordesresource consumption
rather than expressing rigid quotas. This allows for flutires which require large
temporary resources, which are not available in a quotaydesi

Relevant questions to ask about this model are thereforevhid extent is convergence
important? To what extent does the distributed resporisilibrk in avoiding bottlenecks,

such as those which occur when all messages have to filterghmsingle operator. Other
more generic questions are also relevant however: shodadey on automation? Should

not responsibility for changes lie with humans? Can anglgeneral be said about this?
From a scientific viewpoint, one would like to ask:

¢ Does the model increase our understanding of the problersgstém administra-
tion?

Does the model have any predictive power?

Does it generalize or improve upon earlier models?
¢ Does the result of the model contribute positively to sysaeiministration?

The evaluation of the immunity model does not depend upowvaluation of cfengine (an
implementation of the model) as an exercise in softwaresib@ment per se; that is a sep-
arate issue. The concepts which under-pin this model aependent of the mechanisms
which implement it. An evaluation of the model could be broklewn into hypotheses for
definiteness. For example,

The immunity model saves system administrators time.
Some problems can be avoided completely.

Results in a quicker solution of problems when they occur.
The system scales linearly with number of machines.

The immune system is immune to complete failure.

R A

There is no problem that an immune system cannot solveid@dly false)

In order to support or oppose these statements differindskat evidence is required. For

example, the first of these can only be verified by experiefibe. final one can easily be

discredited by a counter example. The claim that the modsésdinearly can be proven

algebraically in the case where no access to server datguged, and must be measured
in cases where file distribution through a potential senatléneck is involved. Rather

than presenting the discussion in terms of hypotheses (whane could pose many) we

shall consider the importantissues in turn.

4 Methods of evaluation

Studies which involve multiple and intertwined variablegth rapidly changing boundary
conditions (e.g. sociology, psychology and system adinatien) suffer from a funda-
mental problem. The scientific method becomes impossiblepdement convincingly.
No sooner have we measured something, than the conditiaies wiich the measurement
were made change. This makes repeated measurements imediepand the collection
of statistics a honsense. System administration falls timtcategory of problems. The
result of this is that the body of system administration klealge is composed largely of
high level concepts, which are difficult to formalize andtteEhere are various ways to
lessen the effects of this problem, but there is no way todath@m completely.

Aiming for scientific progress, one seeks to undertake a&saf studies. Sometimes
these studies are theoretical, sometimes they are enparnchoften they are a mixture
of the two. In this case both is required. The aim of a studyisdntribute to a larger
discussion which will eventually lead to progress in thedfigProgress in a field of study
often requires the development of a suitable ‘technologyaddressing the problems en-
countered there. That technology might be mathematicatpeational or mechanical. It
does not relate directly to the study itself, but it make®#gible for the study to take place.
Progress is made, with the assistance of this improved ieahability, only if the results of

previous work can be improved upon, or if an increased unaeding of the problem can
be achieved, leading therefore to greater predictive poiMee theoretical approach (here
the immunity model) is important for the interpreting of therk, while the technology
(here a program named cfengine) is necessary to make itqp@ssi

System administration is beset with the intrinsic diffigudff how to evaluate a model
in which computer users are constantly changing the canditof the observations one
would like to record. It would do no good to eliminate the ssgince they are the source
of the problems which one is trying to solve. In principlestikind of noise in data could
be eliminated by statistical sampling over very long pesiotitime, but in the case of real
computer systems this is not possible either since seasanations in patterns of use,
combined with continual evolution lead to qualitativelyfeient behaviours which should
not be mixed in a sample. How can this obstacle be overcome?

4.1 Problems with evaluation methods

The simplest and potentially most objective way to test a@hoflsystem administration

is to combine heuristic experience with short, repeataibhelations. Experienced system
administrators have the pulse of their system and can eeatbair performance in a way
that only humans can. Their knowledge can be used to defirgataiple benchmarks or
criteria for different aspects of the problem. But this aggarh is not without its difficulties.

Many of the administrators impressions would be very diffitm gauge numerically. For

example: cfengine is designed to relieve administratora ot of tedious work leaving

him or her to work on more important tasks. Can such a claimeriéi®d? Here are some
of the difficulties

Measure the time spent working The administrator has so much
on the system to do that he/she can work full
time no matter how much one automates
“tedious tasks".

Record the actions taken by There is no unique way to solve a

the automatic system, which | problem. Some administrators fix

a human administrator would | problems by hand, while others will
have been required to do by write a script for each new problem.
hand and compare. The time/approach taken depends on
the person.

If there are no rigid scientific criteria to rely on then hove ave to objectively evaluate
the performance of a software system for system administrat How can we be sure
that we are not fiddling the results? In such a case, the seardtinevitably subject to an
interpretation. Heuristics and impressions must play a helre.

Case studies are usually no more than anecdotal evidenasy. iy provide indica-
tions which motivate a direction of research, but they cafmoseen as proof of anything
since they offer only a single data point. In system adnai&tn, at least, sites are suffi-
ciently different to make any collection of case studiegstfically invalid as a statistical
sample.

System administration is full of intangibles; this limitoatels to those aspects of the
problem which can be addressed in schematic terms. It issalffigiently complex that it
must be addressed at several different levels in an appedgignhierarchical fashion.

4.2 Cooperation and dependency

Another testable issue is that of dependency. The fragieetaf components in any
functional system is the fundament of its operation. If oamponent fails, how resilient
is the remainder of the system to this failure? This is a @i¢\guestion to pose in the
evaluation of a system administration model. How do soféneyrstems depend on one

another for their operation? If one system fails, will thisvke a knock-on effect on for
other systems? What are the core systems which form the bisystem operation? In
the present work it is relevant to ask how the model continaegork in the event of the
failure of DNS, NFS and other network services which providea-structure. Is it possible
to immobilize an automatic system administration modelZhrimmunity model, every
effort has been made to eliminate the need for dependenmiesuch dependencies can
always be introduced unwittingly by administrators who maklicy.

One possible weakness in the immunity model is that it laci®bal web of commu-
nication: if an error on one host requires a change in cordiiom on another, this infor-
mation is not easily communicated to the remote host. Tlis tf global optimization at
the level of the network community is not available to indivals’ internal configuration
engines. This is why humans benefit from doctors’ intellicezrautonomous immune sys-
tems cannot affect the environment which surrounds theey, ¢n only ‘complain’. But
this is not necessarily a major loss; it also touches on tsgstes: if such communication
were to be allowed directly between hosts, it would imply atraetrust relationship. Such
information might be used to bluff a configuration engin@intaking changes, or be used
as a denial of service attack. Thus from a security perspectiis inconvenience is to
be welcomed, since it forces an intelligent interventicepable of judging the complex
interrelationships.

4.3 Evidence of design faults

In the course of developing a model one occasionally dissdeslts which are of a funda-

mental nature, faults which cause one to rethink the wholdewa$ operation. Sometimes
these are fatal flaws, but that need not be the case. Catatpdasign faults is important
for future reference to avoid making similar mistakes ag&esign faults may be caused
by faults in the model itself or merely in its implementatidregacy issues might also be
relevant here: how do outdated features or methods afféava@ by placing demands
on onward compatibility, or by restricting optimal designperformance? To date there
is no evidence of this kind of fault in the immunity model ifseSome features of the

implementation, cfengine, have proven to be little usedéw@r One example is the sug-
gested sharing model used encouraged for NFS, which usegersal naming hierarchy

to mimic wide area file systems. Only a tiny number of usersappo have adopted this.
Other seem to have leapfrogged directly to more advancedyffeems like AFS and DFS

for sharing, which provide the same functionality and more.

4.4 Evaluation of system policies

System administration does not exist without human atisudehaviours and policies.
These three fit together inseparably. Policies are adjustéitl behavioural patterns; be-
havioural patterns are local phenomena. The evaluatiospéi@m policy has only limited
relevance for the wider community then: normally only refaichanges are of interest, i.e.
how changes in policy can move one closer to a desirableisolut

Evaluating the effectiveness of a policy in relation to tipplecable social boundary
conditions presents practical problems which sociolasgistve wrestled with for decades.
Strictly speaking, this is not a part of the immunity modseif, but a layer on top of that.
The problems lie in obtaining statistically significant gdes of data to support or refute
the policy. Only an experienced observer would be able tgéutie value of a policy on the
basis of incomplete data. Such information is difficult tesstrhowever unless it comes from
several independent sources. A better approach might lestdhte policy with simulated
data spanning the range from best to worst case. The adeawtigsimulated data is that
the results are reproducible from those data and thus onedmasthing concrete to show
for the effort.

In addition to measurable quantities, humans have theyatwlform value judgements
in a way that formal statistical analyses can not. Human ¢uagnt is based on com-
pounded experience and associative thinking and whilekslacientific rigour it can be
intuitively correct in a way that is difficult to quantify. Brdown side of human perception
is that prejudice is also a factor which is difficult to elimie. Also not everyone is in a
position to offer useful evidence in every judgement:

e User satisfactionsoftware, system-availability, personal freedom

e Sys-admin satisfactiotime-saving, accuracy, simplifying, power, ease of usd; u
ty of tools, security, adaptability.

4.5 Example: Mean time before failure

The probability of host failure is a measurement which is sbmes used to gauge the ef-
fectiveness of a reliability model. It can be calculatedragpnately from measurements of
system logs, i.e. from the recorded time between systenekpemics and power failures.
Whether or not manual reboots should be taken into accouatibelebatable; sometimes
free-standing hosts are rebooted or switched off by igrtouaers, or even succumb to
power failure. Power failure is usually a detectable stetrdition however and can be ex-
cluded from these cases. Here we shall consider all rebobtsindications of failure, even
though this is probably not true; this gives a worst case atenUsers often reboot hosts
in response to what they perceive as a problem with the systethis is consistent with
the aim of the measurement. Unless systems fail often,ghistia statistically significant
measure however; the best one can do is to measure ‘uptime’.

The following table shows tentative data for the up-timekasts belonging to different
groups of hosts at Oslo College and the University over aopeof four years, corrected
for controlled power outages.

Av. uptime immune hosts group 1 108 days
Av. uptime immune hosts group 2 29 days
Av. uptime immune hosts group 3 40 days
Av. uptime non-immune hosts group|1(no data)
Av. uptime non-immune hosts group|214

Av. uptime non-immune hosts group|230 days

Group 1 comprises servers to which ordinary users have nsiplilyaccess but do have
network access. These hosts generally run for as long asgahgsnditions permit, i.e.
between power failures or disk crashes. Separate locaBiooup 2 is GNU/Linux hosts to
which users have physical access, heavily used. Commotidoc&roup 3 is Sun/Solaris
hosts to which users have physical access. Common location.

These data must be considered only as heuristic values hiegehave not been col-
lected under identical conditions. They apply for a periddime extending over three
years, not necessarily overlapping. During that time trexige details of system policy
have changed many times and the boundary conditions for thik lxave changed, both
with respect to the number of hosts and users, the stabflityeooperating system software
and the intensity of use. The data are not specific enough &bleeto attach cause to the
values, but it seems qualitatively clear that hosts to whidrs have physical access tend to
be rebooted by users. Hosts which are physically secure geeomtinue to run basically
ad infinitum, barring power failure or hardware failure. Téés no reason to suppose that
one group of hosts has been used more than another group.

These data are suggestive but not conclusive. There aredoyp differences to consid-
er this a controlled experiment. This is the main problemdlecting data to verify claims
in system administration. What is important perhaps is hetcomparison between immu-
nity and non-immunity (since these occur in different saesl times) but the fact that the

immune hosts’ lifetimes can be extended to several timegattgrns of behaviour (daily
or weekly) that users or software exert on them. In the capdgsically secure machines,
there does not seem to be a practical limit to the lifetime lobst.

Mainly indirect, anecdotal evidence supports the idea dludmatic immune config-
uration improves a host’s resistance to failure. For examipl a recent episode at Oslo
College a GNU/Linux host which did not run cfengine was bioko, in spite of the fact
that it was running a version of the operating system whick wato 18 months newer
than other comparable systems on the network. The reasahddsreak-in was simply
naive configuration and inexperience on the part of the on@emparable episodes have
been reported by other users.

At this level that one obtains suggestive evidence for thebes of automation. How-
ever, these episodes do nothing to confirm or deny the immyurodel, or cfengine specif-
ically.

4.6 Fluctuations and their convergence

The immunity model allows fluctuations in system parameiezsthe values may change
with time, but generally have some more or less constantgeevalue over long periods.
This is in contrast to some models, such as those involvirggaguwhere user-processes
must subsist within rigid boundaries. For example, hugeptnary files are allowed by an
immunity model as long as they do not collectively build ug @moke the system in the
long term. How far should these fluctuations be allowed taatevirom the ideal? Can
they accumulate leading to a systematic error or drift orthey random averaging out to
nothing? This is a question of policy.

Quantitative measures of fluctuations can be given a rigonmeaning with regard to
a theoretical model. However the practical problem is gag#imonstrated by comparing
two as near identical machines as is practically possibédtitity cfengine for one of these
machines for 36 hours, while allowing cfengine to run noidgnah the other for the same
period, permits a comparison of the state of disarray of the-immune host after this
period of time. The output generated reflects the actionghvhiere actually performed,
not the number of things which was checked. In both casesatine siumber of items was
checked on the basis of the same system policy. The hostngiféngine produced the
report shown in figure 4.6.

metaverse# cfengine -q -l -K

cf:metaverse: Executing script /usr/sbin/rdate nexus >/d ev/null 2>&1...(timeout=0)
cf:metaverse: Finished script /usr/sbin/rdate nexus >/de vinull 2>&1
cf:metaverse: Signalling process 98 (inetd) with SIGHUP

cf:metaverse: Executing shell command: /local/sbin/sshd

cf:metaverse: (Done with /local/sbin/sshd)

cf:metaverse: Signalling process 98 (inetd) with SIGHUP

Figure 1: The tasks carried out by cfengine on a a host rurefeggine regularly. This is
to be compared with the next figure.

while the host which had had cfengine disabled producedutgubin figure 4.6. This
later output shows how several files have fallen behind iir thgdates and how both file
and process garbage has accumulated over the 36 hour périosl.experiment can be
repeated and the number of lines of output can be used as airaezsthe degree of
deviation from ideal state. Over fifty runs, the hosts whidhmbt run cfengine regularly
required significantly more work that those which had reedikegular maintenance, where
‘significantly’ means several times the number of lines. @hbtial measured average has
no reliable meaning, since it depends both on policy and #tara of the work being
reported, thus it is not quoted here. It is sufficient to relcthrat the average value was

romulus# cfengine -q -I -K

cfrromulus: Updating image /etc/group from master /iu/nex us/locall/iu/etc/group.linux on nexus

cf:romulus: /etc/group had permission 600, changed it to 64 4

cf:romulus: Updating image /etc/cfengine/inputs/cf.sit e from master /iu/nexus/local/gnu/lib/cfengine/inputs/ cf.site on localhost
cf:romulus: /etc/cfengine/inputs/ct.site had permissio n 600, changed it to 755

cf:romulus: Updating image /etc/cfengine/inputs/cf.mai n from master /iu/nexus/local/gnu/lib/cfengine/inputs/ cf.main on localhost
cf:romulus: /etc/cfengine/inputs/cf.main had permissio n 600, changed it to 755

cf:romulus: Updating image /etc/cfengine/inputs/cf.mai n~ from master /iu/nexus/local/gnu/lib/cfengine/inputs Icf.main™ on localhost
cf:romulus: /etc/cfengine/inputs/cf.main™ had permissi on 600, changed it to 755

cf:rromulus: Updating image /etc/cfengine/inputs/cf.sit e~ from master /iu/nexus/local/gnu/lib/cfengine/inputs Icf.site™ on localhost
cf:romulus: /etc/cfengine/inputs/cf.site™ had permissi on 600, changed it to 755

cfrromulus: Updating image /etc/hosts.deny from master /I ocal/iu/etc/hosts.deny on nexus

cf:romulus: /etc/hosts.deny had permission 600, changed i t to 644

cfrromulus: Updating image /etc/hosts.allow from master / local/iu/etc/hosts.allow on nexus

cf:romulus: /etc/hosts.allow had permission 600, changed it to 644

cf:romulus: Executing script /usr/sbin/rdate nexus >/dev /null 2>&1...(timeout=0)

cf:romulus: Finished script /usr/shin/rdate nexus >/dev/ null 2>&1

cf:romulus: Deleting /tmp/kfm-cache-654/index.txt
cf:romulus: Deleting /tmp/kfm-cache-768/index.html
cf:romulus: Deleting /tmp/kfm-cache-768/index.txt
cf:romulus: Deleting /tmp/kfm-cache-532/index.html
cf:romulus: Deleting /tmp/kfm-cache-532/index.txt

cf:romulus: Deleting /var/spool/cfengine/_etc_hosts.d eny.cfsaved

cfrromulus: Deleting /var/spool/cfengine/_etc_group.c fsaved

cf:romulus: Deleting /var/spool/cfengine/_etc_cfengin e_inputs_cf.site.cfsaved

cf:romulus: Deleting /var/spool/cfengine/_etc_cfengin e_inputs_cf.main.cfsaved

cf:romulus: Deleting /var/spool/cfengine/_etc_cfengin e_inputs_cf.main™.cfsaved

cf:romulus: Deleting /var/spool/cfengine/_etc_cfengin e_inputs_cf.site™.cfsaved

cf:romulus: Deleting /var/spool/cfengine/_etc_hosts.a llow.cfsaved

cf:romulus: Signalling process 7575 (maudio) with SIGKILL

cfromulus: Killed: henrikf 7575 0.0 1.3 4328 408 ? S Jan 15 O: 00 maudio -media 258
cf:romulus: Signalling process 5427 (maudio) with SIGKILL

cfromulus: Killed: sigvarr 5427 0.0 1.4 4328 428 ? S Jan 14 0: 00 maudio -media 256
cf:romulus: Signalling process 5572 (maudio) with SIGKILL

cfromulus: Killed: ulekler 5572 0.0 1.3 4328 404 ? S Jan 14 0: 00 maudio -media 257
cf:romulus: Signalling process 7566 (kaudio) with SIGKILL

cfromulus: Killed: henrikf 7566 0.0 1.5 4660 464 ? S Jan 15 O 00 kaudioserver
cf:romulus: Signalling process 5419 (kaudio) with SIGKILL

cf:romulus: Killed: sigvarr 5419 0.0 1.4 4660 444 ? S Jan 14 0: 00 kaudioserver
cf:romulus: Signalling process 5564 (kaudio) with SIGKILL

cfromulus: Killed: ulekler 5564 0.0 1.4 4660 444 ? S Jan 14 O 00 kaudioserver

cfrromulus: Signalling process 106 (inetd) with SIGHUP

Figure 2: The tasks carried out by cfengine on a a host whidtbean deprived of cfengine
care for 36 hours. Compared to the previous figure, theredsaf ivork to be done to bring
the system back in line with policy.

a statistically significant number. The conclusion is tf@mthat hosts running cfengine
regularly are significantly closer to their ideal state thasts which did not.

The data collected in connection with feedback studiesfin[8} show that there is a
steady drift (increase) in disk usage but that behaviouomidated by large fluctuations.
This behaviour is typical of multiuser hosts. Single usesthanight be be better behaved
depending on the habits of a user but worst case behavioufdshbvays be expected.

The data indicate a pattern of usage which does not lend itseigid quotas. The
indication is then that it is important to allow some elasfic For example one many
compare the idea of disk-quotas with enforced garbagedat@le Many programs make
use of temporary files (compilers, web browsers etc) whiehadten large. These files do
not need to exist for long periods of time, but rigid disk captmight prevent them from
being created at all and thus some software will fail withidiguotas. With a fluctuation
model temporary files can be generated freely, but the immystem will clean them away
later as a normal part of its operation.

The need for fluctuations is clear: if one takes the idea ofja $ystem to extremes
then, in a quota environment, users would not be able to ahanyg feature of the system:
no files would be created, no processes would be startedwbhitel be a farcical situation,
but the ideal is clearly a matter of degree. How large can doe #luctuations in resource
usage to become before system integrity is compromisedh&navay of putting this is:
how large can fluctuations become before an immunity engimaéldvbe unable to rescue
the system?

4.7 Feedback regulation

In any feedback system there is the possibility of instibiliof either wild oscillation
or exponential growth. Stability can only be achieved if gf&te of the system is checked

often enough to adequately detect the resolution of thegdwmtaking place. If the checking

rate is too slow, or the response to a given problem is nohgtemough to contain it, then

control is lost. The immunity model admits and even encoesabe use of feedback as a
paradigm to control resource usage through competition.

In ref. [3] it was shown how uncontrollably spawning proecessould be successfully
controlled with a surprisingly simple cfengine program. iSftwvas initially unexpected.
Even when the process table was full of user processes tmthevwghere further user-forks
failed, a privileged process run by root was able to stop telem given the fixed size of
the process table and eliminate every offending processsirtfiree iterations. The same
experiment was applied to disk usage using feedback methitidsimilar findings. The
reason why it is possible to win over runaway resource usagarple: the resources are
finite. Experiments indicate that, as long as crucial functioeswat prevented completely,
a privileged immune model will always be able to regain colnf fluctuations in a finite
system.

This poses a question: is feedback really necessary at aiBdifack is an implicit
form of recursion, but many recursive algorithms can beaegd by iterative ones. The
advantage of recursion is that one does not need to speeifyzh of the data one is parsing,
whereas iteration lends itself to finite size structuregotfay’s operating system hosts, the
size of system resources often seems unlimited but thislysamillusion. Process tables
have finite sizes and disk partitions have only finite numbéldocks.

As an example, consider the case in which a process is forkimgntrollably. For
example, consider the Unix shell script:

#!/bin/sh

echo README
README

This script is called README because a problem which ocaeslg occurs on Unix sys-
tems is that README files are carelessly given executabletsipy a user who then in-
advertently executes a README file as an executable scripteSREADME files often
contain text which a Bourne shell interpreter can undecstamd often include the word
‘README’ itself, this accident often leads to an uncontatily spawning process. The
execution of the above script leads to a rapidly spawninggss which quickly fills the
process table. What is interesting to determine is theiglig: can a simple iterative
cfengine program handle this situation and respond quieklyugh to be able to kill all
instances of the offending program? The answer turns oué tgels, because of the finite
size of the process table. Consider the program:

control:
actionsequence = (processes)
processes:

"README" signal=kill

In the first few trials this program was used on a GNU/Linuxthin®rder to counter the
README script. After starting the README script, the cfengi program was run at
different time intervals after the start of README. If thente difference between starting
README and the cfengine program was not too great, this silitgkation was able to

kill all of the README processes. However in a real situatimme cannot predict the
time between the initiation of an uncontrollable process the response from an immune
reaction. With this simple program, after a certain thrddhloe number of copies became
too great to catch all of the processes in a single iteratifxperiments showed however
that repeated calls to the program could eventually be wssip all the processes. After a
time processes would not be able to spawn new children asadless table has a finite size.
In GNU/Linux some processes are reserved for privilegeds)seeaning that cfengine will
always be runnable.

This begs the question, could one simply have added théider® the program at the
beginning. For example:

control:
actionsequence = (processes.l processes.2 processes.3)
processes:

"README" signal=Kkill

After a number of trials it was possible to show that thregsiiens was enough to stop any
runaway process with this experimental setup. Clearlyélason for this is the finite size of
the process table. This result is somewhat surprising. Ggbtrhave been tempted to look
for a complicated solution to this problem involving feedbabut this proves completely
unnecessary.

The finiteness of resources might therefore be an importaetto building immune
systems. Virtual file-systems which present the appearahaalimited resources might
actually be an undesirable illusion for an immune systeneylould rapidly lead to the
inability of the immune system to parse the disks. This isething to be borne in mind
by system designers.

4.8 Time scales

A straightforward comparison of the time-scales involvedautomated maintenance, to
those of manual human maintenance can be made for any aperndtich is programmable
in an automatic system with current technology. It is easshiow that human administra-
tors only compete with automatic systems in speed and effigiat times of the day when
they have nothing pressing to do. Indeed, it is always ptestibarrange for an automatic
system to beat a human, provided it can run in overlappirtgimigtions (see figure 1).

Alarm systems which merely notify humans of errors and thelg on a human re-
sponse are intrinsically slower than automatic systemshvhépair errors, provided the
alarms represent errors which can be corrected with cuaetemation.

The response time,,;, of a automatic machine systefd, (e.g. cfengine) falls be-
tween two bounds

nTp + Te(A) > tauto > Te (A) (1)

whereT;, is the scheduling period for regular execution of the syster. the cron inter-
val, typically half-hour to an hour)T (A4) is the execution time of the automatic system
(typically seconds). The integer > 0 since the number of iterations of the automatic
system required to fix a problem might be greater than one.tiflerequired to make a
decision about the correct course of actiyfA) is negligible for the automatic system.

Work

time

<Tp

Figure 3: Overlapping work rates of human and automaticesyst

For a human being, making a decision based on a predecidieg,fbk response time
thuman falls between the limits:

00 2 thuman ZTw(H)"'Td(H)‘I'Te(H)- 2

T.(H) is again the decision time, or time required to determinectireect policy response
(typically seconds to minutes)T, (H) is the time required for a human to execute the
required remedy (typically seconds to minute®),(H) is the time for which the human
is busy or unavailable to respond to the request, i.e. thétimae¢. The availability of
human beings is limited by social and physiological consitiens. In a simple way one
can expect this to follow a simple pattern in which the reggotme is greatest during the
night,

Tw(H) ~ Cl + CQ sin(Qt)

with C; > 1C> whereas
Tw(A) ~ 0.

whereC, > C; are constants arfd is a daily frequency. We can note that human response
times are usually much longer than the machine responss,time

Ta(A) < Ta(H)
T.(A) < T.(H)
®3)

Also,

T. > T,
Td > T’r‘ (4)

and that the periodic interval of execution of the automagistem is generally required
to be greater than the execution time of the automatic systems avoiding overlapping
executions (though this is not a problem, see the discusdiadaptive locks[4])

T, >T,. (5)

It is always possible to choose the scheduling interval tarbérarily close tdT. (A) (i.e.
small) and then provided,

T(H) > Tc(4) (6)

it must be true that the automatic system can always win olien@an. This last inequality
requires qualification however, since very long jobs (sustbackups or file tree parses)
increase exponentially in time with the size of the file tree@erned. This makes a pre-
diction: it tells us that one should always arrange to allowtslong jobs to be run last in
a sequence of maintenance tasks, and also in overlappabéeith This means that long
jobs will not hinder the rapid execution of a maintenancegpam.
Cfengine allows overlapping runs using its scheme of adegticks[4]. Thus, by

scheduling long jobs last in a cfengine program, it is alwagssible for cfengine to beat a
human, unless it is prevented from running.

4.9 \Wulnerability of the model to subsystem failure

A concern for a model which is supposed to ensure securityaamgvity is that the integri-
ty of the software might be compromised through an implieipendency. Any software
system which has control over the total operating system afraputer is vulnerable to
abuse and attack by spoofing. How invulnerable can an immystera be? Vulnerabili-
ties can arise through bugs as well as through dependenuigsust relationships. A key
feature of the immunity model is that it trusts as few thinggassible. Like any other
internet software however, it has to implicitly trust thewerk services which provide the
core communication protocols. Dependency on hostnameufpiska clear example. This
dependency is obvious and provable whenever a host is eeferby name rather than by
number; it is a function of the internet protocols, not of algpendent software.

If DNS (the Domain Name Service) fails or is spoofed, hostedmokups fail and the
translation services are compromised. A trusted servehifig substituted for a falsified
server and be used to install false data on the system. Tharityrmodel can continue to
function in this case, but some functionality might be lostised to trick the system into
importing false data. This kind of spoofing attack affect$akt-based software systems
which import data from a network. Whether or not such lossuoictionality is capable of
causing complete system failure depends on the admindstrablicy in use; however, any
policy which did have this property would have to be consdeas violating the tenets of
the immunity model.

In general it would be safer to use machine level addressearirerical form for op-
timum security. This method minimized the number of sofeveomponents involved in
authentication and is secure to DNS level spoofing attaakisndt to TCP spoofed con-
nections. TCP spoofing can be prevented with proper routefigiaration so this is not a
relevant issue for host-based immunity models. It is a $gcissue which should become
increasingly difficult in years to come. If a server is spabféne failure of remote copying
services (like cfengine’'s own copy service, or the NFS) cammgromise individual oper-
ations, but none of these will leave the host in an inconsistate. i.e. it is possible to
substitute a false configuration but it is not possible tcseguartial writes or contradictory
file references. Thus, if spoofing can be eliminated by chegfantion to security policy,
the only danger comes from denial of service attacks. Thg dahger from protracted
denial of service attacks is that a host configuration migttioine antiquated. Currently
cfengine uses adaptive locking to provide partial protecfrom denial of service attacks,
but there exist no foolproof methods for protection fromtsattacks.

4.10 Human involvement

The indications of the foregoing sections are that an auticragstem combining iteration
and feedback will be able to dampen out any fluctuations in itefsystem. This is a

necessary feature of an immune model. This does not mearytthaga control based
model would not be able to solve the fluctuation problem al$e issue one always comes
back to is that of a human bottleneck. What makes an immunehddterent? The answer
is that the diagnosis and response does not have to pasghihadwman go-between.

First of all there is problem detection. Without an automationitor one has to rely on
divergent fluctuations being reported by a user. This coailk@ tseveral minutes, perhaps
fifteen minutes before a user is able to contact a human asinztor. Next there is the issue
of whether an administrator would be able to secure acceashmst which is consumed
by a runaway process or a full disk. Often divergent behavinakes login impossible
for new users. Assuming that the administrator can log ird evercome a feeling of
panic in fighting a losing battle, it would be necessary tcatecand kill the offending
processes. Assuming that a suitable program had beenmititteerform this function at
all (such programs are not commonly available) then the &mound time for a response
is approximately a half hour after the occurrence of the fgab This is an optimistic
assessment. With an immune model checking hosts at halfihtmuvals the same result
could have been achievedssimisticallyvithin half an hour and without involving a single
human being. These numbers are used here based on the swthnréxperience at two
different university environments.

An immunity model does not in itself contribute anything hetissue of assisting the
cooperative effort between human administrators in a lagfe/ork. However, when im-
munity is based on a single centralized policy, all humaniagmators are forced to see
one another’s decisions and changes, and thus there issaateloottleneck, without forc-
ing a performance bottleneck. The cfengine user surveyatds that most users believe
this to be an efficient form of disciplined communication.

4.11 Prediction and understanding

The success or failure of a model lies not only in its abililysblve specific immediate
problems but also in its ability to make predictidmsfore the facand to lead to a greater
understandin@fter the fact The fact that immune systems protect all animal life larger
than tadpoles makes it intuitively clear that somethingudlam immune system must pro-
vide a selective advantage over mechanisms without an irereystem. An grain of fur-
ther reflection makes it clear that immune models are no niane teedback prey-predator
models which invoke the concept of selective competitiarfifite resources. Operating
systems are about resource allocation between competitigrfa so it should not be a
surprise that the introduction of another competitive éfthe immune system) would be
needed in order to regulate the availability of free reseslio a competitive environment.
There are dozens of examples of this abstract idea to be fourehl cooperatives. The
predictions of such models are fairly clear:

¢ Finitenessor the competition for finite resources within a finite systdiis always
possible for a strong enough competitor to either win or totim an adversary.

¢ Threshold behaviouiGiven competitors with fixed strength, there exists a thoés
beyond which the system will run away in one direction, i.ee of the competitors
can win the competition if a threshold is crossed. In immursponses this has to
do with the timing with which the immune response is actidatéf the response
happens too late, it might not be possible to gain the upped hrathe competition.

These behavioural elements of competition have been abdarvef. [3]. So far threshold
behaviour has not been observed. This remains a theorptsaibility to be demonstrated
(or preferably not) in the future.

Does the immunity model then lead to a greater understarafitite business of sys-
tem administration? Within the boundaries of the definitmlopted here there are several
things one can learn from the success of the model, repoytéd bsers (see below). The

first (almost a tautology) is the extent to which resourceti@biplays a central role in the

stability of both single operating systems and networkeslesys. The truth of this claim
can be seen in the on-going experiments of the sites runrierggine. The numbers of
megabytes of files deleted per day in order to maintain astgho is almost sufficient to
prove the point. The same applies to other resources. Siynilee extent to which acci-

dents and errors lead to incorrect configuration of file orcess attributes. However this
is, by now, an almost trivial point.

Another more important way in which the model contributegiderstanding of system
administration problems is that the method of convergetdraation forces sites through
a disciplinary procedure in which they must formalize thioblems into a well-defined,
implementable policy. While this inevitably leads to a siifigation of many problems, it
can usually be an acceptable simplification whose beneétaarth the lack of nuance.

It is also possible to turn the above around and use the madelparticular looking-
glass for computer systems. How can the observed behaveexplained in terms of
the model? In the case of disk and other resource usage thprdator viewpoint is an
obvious one, once pointed out, and provides an immediaighhisto the possibilities for
controlling fluctuations without too heavy a hand. Also isoarce attributes, such as file
permissions which can lead to security breaches, fluctosiitue to human error can be
seen as random perturbations which require dampening.

5 Evaluation of cfengine

We now turn to an evaluation of the immunity model's impletagion tool cfengine
Cfengine was designed with an immunity model in mind, butrityides many semi-
intelligent features which are not present in other systemiaistration tools (e.g. tree
linking with local override, process management, clasetakecisions etc.) and thus it
also plays a role in system administration independentithefconcepts surrounding it.
Indeed, most users perceive cfengine as a system admiioistraol, without appreciating
the model and principles on which it is based.

In general terms of policy implementation, cfengine is waéts: it allows one to emu-
late expensive technology (like disk mirroring) cheaplg. iat no physical cost and with
the minimum of effort (just a single line in a configuratiorogram). This has contributed
to its popularity as a tool, independently of any connect@man immunity model.

Since each feature of cfengine is based directly on desigeiptes, including conver-
gences and independence, there is no question of whethet ibicarries out the low level
operations it was intended for apart from the possible aenge of bugs. Since bugs are
associated with the software development process whiabt iseing studied here, they will
be ignored in this paper. Cfengine was not designed in amgstnt software development
environment by a team of engineers, it was written, to the bethe author’s ability, in
order to realize certain theoretical requirements for m#tion of system administration
experimentally. It is therefore not appropriate to consitiéo be a software ‘product’ in
the formal sense.

Whether or not cfengine performs an adequate job in impleimgan administration
policy does require verification however. Cfengine wasgiesdl to have the features of the
immunity model: namely convergence to a specified state raehiendence from outside
intervention. The evaluation of cfengine thus reduces o ttrings: the completeness of
its repertoire of functions and what its users think of itséa on their own experiences.
Neither of these gauges can be made fully objective in trensiic sense, but the first can
be made plausible.

5.1 Repertoire

There is a finite number of things which can be manipulatednroperating system.
Cfengine implements tools for examining files, creatingsfil@iasing files, replacing files,
renaming files, removing files, editing files, changing asadghts on files, starting and
stopping processes, signalling processes, examining anfigaring hardware devices.
Moreover it is extensible by modular scripting. Cfengineegamot know any commer-
cial binary database formats so it does not have a native amésrh for reading from or
writing to non-ASCII files, but this is not normally a limifah since most binary file for-
mats used in operating system configuration (e.g. the WINgstry) can be converted
to text format first by a translation wrapper. Support fonskation wrappers is included
in cfengine. Other operations which are in the form of tratisms require specialized
scripts or modules, e.g. in Perl. This extensibility thrbugtegrated, user-defined scripts
makes cfengine not just a tool but a supportive environnieistnot cfengine’s prerogative
to compete with more appropriate languages for specialiaskk; its aim is to provide a
framework for integrating all such tasks.

One area in which cfengine has made a standardizing cotitnibio file security mod-
els is in providing an operating system independent modetdafiguring access control
lists. ACLs are common to many operating systems today lawetls no standard imple-
mentation for these and the tools for manipulating them &rmsy and interactive. By
providing an off-line method for ACL configuration, cfengithas made the use of ACL
control viable for Unix-like systems where their use hasrbegtional. In systems like NT
where ACLs are the only security mechanisms, this will beptal.

Is cfengine’s approach to extensibility better than othgraaches? Other tools like
OpenView and Tivoli can also be used to install user definegdtsg but these are not oper-
ating system independent, class sensitive or of net-witidityg moreover their operation
cannot usually be used to trigger responses from other patte system administration
repertoire, only warnings to contact a human. Tivoli is gtamnal in allowing system
thresholds to trigger the execution of tasks or packageespjiut not every contingency
can be interpreted as a threshold transgression. A erraotig threshold problem. An
error needs to be fixed once and then left alone. This regainestion of convergence
which could be incorporated into a Tivoli script run at regyuhtervals, but it is not as part
of the Tivoli model. Tivoli itself will not switch off the sdpt if the problem is fixed. It
would have to be added by a user. One could, for instance usé 3imply as a front end
to cfengine (though the irony might be dizzying). No doubtdlii will add such features
in time. At present cfengine apparently offers a marginaityre versatile environment for
extensibility in the tasks it was designed to perform.

5.2 Hypotheses

Other ways of gauging cfengine’s success or failure can lleeaded by formulating hy-
potheses:

1. Cfengine places no significant load on a computer.

2. Cfengine has no more limitations than any other systemtg&iable)
3. Cfengine’s atomic operations are always convergent.

4. Cfengine’s atomic operations are fault tolerant.
5

. Cfengine covers every manipulative operation requicecifgeneral operating sys-
tem.

6. An expert system approach to system administration fsitban one involving only
a human knowledge base.

Not all of these hypotheses are testable. Some (e.g. numlaee 3nanifestly false, but
can be made true with certain qualifications, so, again eratian considering specific
hypotheses, more clarity will result from a higher leveladission of the issues.

5.3 Expert system approach

The expert system base of cfengine is the device which erebaaiperience acquired
during the evolution of an immunity model. This is where omdlects experience and
rules about states and actions to be taken. Since the rededspublication of cfengine
(1994/95), two other systems have adopted some of its festdrivoli newly announced
(Dec. 1998) that it would include an expert system in its nge@maent software and Host
Factory has been using a database approach for a few yeanis nds related related ideas,
though it is more rigid than cfengine. Reference [5], whipip@ared about the same time
as the publication of cfengine also advocates the use ofauapproach. This can be taken
as support for this approach to system management. Theteyséem approach also plays
an important role in centralizing the information behindyatem policy. It directly assists
the business of cooperation between human administrayopsdviding a single point of
reference and a self-documenting base of responses ts.crise

5.4 Convergence and response time

One way of evaluating the performance of cfengine is to firel dlierage slew rate for
fluctuations of the system from its equilibrium position. dther words, we look for the
average time for the system to return to normal after an dent’. This is not a clean
measurement as it would be in the case of a pendulum swindingtats equilibrium
position. After all it is not cfengine which is responsible the response but the policy
expressed in order to implement such a response which iglhegted here. Cfengine
is simply the reactor which detects the undesirable stadeaativates a pre-programmed
response in order to fix it. What we wish to test is thereforev leorealistic example
responds to different kinds of pressure from user pertishat We shall consider two
separate tests: one concerning processes and the othercimigodisk space.

The use of feedback methods to control disk-space has gll#seh considered in ref.
[3] with real data from a real system. It is also possible tstpthe system artificially by
simulating particularly challenging incidents which wdutot normally arise. This has
been done in several instances with

e Disk filling
e Process filling
¢ Adaptive lock contention

In each case the approaches could be made successful, thHioundaries of the policy.
Each test relied upon the success of a given static policgdotrol. The exact time taken
to dampen out fluctuations depended on the nature of theypatid the frequency of the
immune checks. What was missing from these trials was tHiyatoi adjust policy auto-
matically to copy with the unexpected. The is presently Inejthe capabilities of available
technology.

What about the response time of an immune system comparié tesponse time of
a human? One cannot measure the full effect of a system agtraioir being complete-
ly absent, e.g. how do users experience the total system thieeadmin is on holiday?
However, one can ask what the effect on the stability of thal ®ystem was. Here one
may conclude that, short of hardware failure or extreme regfeable circumstances, the
absence of the system administrator has little effect osyistem.

5.5 Effect onload averages

Cfengine does not place large demands on system resouritiesha/ possible exception

of during large file-tree distribution. One would not themef expect it to have a significant
impact on load averages, except during major softwareibligions. What can happen

however is that the extensive use of cfengine to performelaple checking could lead
to contention for disk scheduling. The adaptive lockingdieas were intended to ensure
that cfengine would not contend with itself for resourcegesadut they do not help against
resource races with other processes.

Experience over several years shows that the load presbgteféngine is minimal,
seldom more than a few percent of available CPU time evemdunitensive tasks. This
presupposes that user scripts which are CPU bound are noédédi be a part of cfengine.
Resource contention, of course, has nothing to do with défienigself but with the method
of file tree parsing which is common to a lot of software. Onragiag systems without
proper disk scheduling algorithms this might be a significaachanical problem, however
for the operating systems which are actual for cfengineithisot an issue. In a test us-
ing a Sun Enterprise Il server with medium load, a partidyleontentious disk-intensive
cfengine process was started. This resulted in 11 perceheéd@PU usage and reduced but
barely noticeable performance degradation for other tadksle the values are not partic-
ularly significant what is important is that the cfenginegess (even when working hard)
was well within the limits of reason. Interactive users o gystem were not noticeably
affected.

To examine the load placed on the most active server hostslat@llege measure-
ments of disk activity were made from the kernel data, usimgtat andnetstat

CPU efficiency has never been a criterion for cfengine. $&feturity and adaptability
have come first, then disk access efficiency, memory effigiand last of all CPU usage.
Nonetheless, cfengine does not transgress the boundsayidelsy placing noticeable load
on hosts running it.

5.6 Limitations

The assertion that cfengine has no limitations which otlemiaistrative tools have is not
a readily testable hypothesis; however the converse islyesaparent. Most other system
administration tools are lacking in the ability to clasgifgtwork resources according to an
abstract model, they lack the notion of convergence towarfilged state and most of the
them lack any kind of feedback regulation.

Cfengine programs attach actions to methods which detétgtrpa. From experience,
the main limitation in cfengine is in the techniques avdadbr pattern detection. Patterns
detect files or processes which have particular properéiegresent pattern detection is
based on regular expression string matches, date stampgtaardile attributes.

Cfengine is missing some obvious, but infrequently reqlipattern matching criteria,
for instance, the ability to search for files owned by a specifier when checking permis-
sions. These deficiencies do not affect the principle ofsration, only its effectiveness.
They can be added quite easily; the only restriction is ingfegramming time required
to implement them. The main reason why cfengine works wedhawithout these addi-
tional features is that experience shows that simple rutesfien more efficient and more
predictable than complex rules.

Biology also indicates that this is true. Biological immuyestems have non-specific
rules for garbage collection (macrophages and naturaridkblls) and highly specific rules
for signal detection (B and T cells), followed by a mechanighich marks certain identi-
fied patterns as garbage.

The addition of new pattern matching features will no doudsttmue for a long time.
Indeed this is the nature of the extensions discussed irefh@n feedback. In the future

Suspicious file "H"H"H in /ul/olseny/.netscape has no alph anumer-
ic content

Suspicious file "H in /ul/theigms/sdt/demon has no alphanu mer-

ic content

Suspicious file ! in /u2/bohmerm/help has no alphanumeric c ontent
Suspicious file # in /u2/bohmerm/help has no alphanumeric c ontent
Suspicious file : in /u2/bohmerm/help has no alphanumeric c ontent
Suspicious file - in /u2/nesst/x has no alphanumeric conten t
Suspicious file -"HH in /u2/rustanr has no alphanumeric co ntent
Suspicious file $ in /u2/arshadm has no alphanumeric conten t
Suspicious file "H in /u2/bersetg has no alphanumeric conte nt
Suspicious file $ in /u2/waldenk has no alphanumeric conten t
Suspicious file in /u2/mirzam has no alphanumeric content

Suspicious file "H in /u2/mirzam has no alphanumeric conten t
Suspicious file "B in /u3/henrikf/OS/FS_copied has no alph anumer-
ic content

Figure 4: Output policies for cfengine tend to start out too verbosthnbeginning as a
new feature is added. These are later made silent as morarisdd about the behaviour of
the feature. For example, here is early test-output fromcaisty feature designed to reveal
hidden files after adding a test for non-alphanumeric fileeaniThe result is interesting,
but not useful. Clearly most of the files are accidents. Fetance the control character
indicates that a user has typed backspace to delete a filertamthat somehow the file has
been made by accident. Other files on the other hand filenameased of punctuation
marks can be legitimate. After receiving this output, tret teas altered to check for only
non-printable characters.

feedback techniques will improve to encompass introspeetnalysis of the network and
the operating system.

5.7 Human involvement

Another area where improvements could be made is in the ahoduesidual output gen-
erated by cfengine and how this output is collected and dedivto a human. The number
of error messages being reported is sometimes too high. $6the error messages are
quite uninteresting. For example, ‘cannot mount a file-eystetc, which one has little
control over. Timing problems in the RPC substructure cdlisse errors and they resolve
themselves.

In the original cfengine, the idea was to report all deviasiércom intended configura-
tion. However, this resulted in hundreds of messages peeday from only thirty or forty
machines, so as the system became trustworthy these mesgagesilenced one by one
and replaced with a ‘verbose’ option for debugging purpo$ée default was therefore to
produce no output. In fact, a new system of graded output wasldped in response to
this issue.

Cfengine’s current output model works on a ‘want to know’ibaCfengine reports
nothing unless i) its configuration stipulates that it sliook i) the problem is of a serious
nature which cannot be resolved by rerunning cfengine. attime most of the latter cat-
egory concerns errors from system calls which resolve tlebras after a certain time and
so delivering these messages to a human administratorysipeplerates noise. This is a
topic for future consideration.

5.8 User experience with cfengine

Since its general release in 1995, cfengine has attracezd frem hundreds of sites around
the world. NASA, ESA, CERN, the San Diego super-computing&e many universities
and numerous small and large companies (Nortel, Alcatéll t8 name a few) are using
cfengine to centralize the administration of their netvgor®f the larger companies which
have been attracted by cfengine, Hewlett Packard and Th@@x&poration are perhaps
the most significant with regard to their active enthusiasmtlie project. A number of
intelligent features were added to cfengine on the sugyestf R. Ralston of Hewlett
Packard[6] so that HP could use cfengine as a software latstad engine for some of their
products, and Transarc donated the materials and licensaébd DFS in order that we
would develop support for their customers, many of whom vedready using cfengine.

With the exception of occasional bug fixes, and the DistadufFile System (DFS)
supporting code (which was written by Demosthenes Skigjtacfengine was designed
and written by the author. It comprises some 30,000 lines sb@ce code and has been
adapted for use with nearly every kind of Unix operating sgstnd NT.

The moderate success of cfengine seems to be attributabd®tof its key features.
The first of these is the usefulness of its abstract class mdde classification of ma-
chines and resources around the network enables huge ikettedrse described optimally
within a single framework. This possibility for abstragtichanges the paradigm of sys-
tem automation from one of patching systems with numeroasiafized scripts to one of
building libraries of expert rules of behaviour. In a verarsense, the class feature makes
cfengine a tool for building expert systems.

The second attribute for cfengine’s success is the convgrggmantics of its opera-
tions. The fact that any system will converge to a stable gondition means, as one user
put it, that ‘things never get worse’. This may be contrastétl the approaches of nearly
all other alternative systems. Finally, it is very impoitémat the burden of work is spread
around the network. By making every machine responsiblétéoown state, there is no
bottleneck centralization. This is one of many advantades'pull’ model over a ‘push’
model. Indeed, with most alternative management systeenlsdatileneck is a human. File
servers are more efficient at dealing with files requests themans are at tracking systems
and issuing commands to modify them. Cfengine appareridwalhumans administrators
to work at a higher, more intuitive level.

In spite of two separate attempts to gather feedback by ignestires and surveys it
has proven very difficult to get cfengine users to completefarmal questionnaire. The
handful of users who reply to such attempts tend to be alraatlye supporters of the soft-
ware, thus the criticism tends to be at the level of minor itketén system administration,
there is no on-going discussion of what is good and bad aludtware; rather there is an
air of rivalry to see who can ‘do it best’.

The on-going questionnaire which is distributed with cfielegsoftware and which ap-
pears on the WWW site is the following:

1. Are you using cfengine? If not, are you interested in ugihdgVhat are your reasons? If so,
what version of cfengine are you using?

2. Approximately how many hosts does your cfengine configaraover? What OSes?

3. Have you used any other system administration tools {ev@li, Openview,Solstice?) If so,
in what way were these tools good or bad compared to cfengine?

(a) Ease of configuration
(b) Power of expression
(c) Limitations

(d) Efficiency

(e) Security

4. How would rate on a scale of 1 to 10 (where 10 is good) thewatig features of cfengine

(a) Central configuration file

(b) Classes

(c) Pull rather than push in copying

(d) Convergence

(e) Mount model

(f) Its basic functionality

(9) lIts reliability

(h) The idea of feedback through classes
(i) Anything else (please specify)

5. Do you feel that cfengine is missing any important/pregs$eatures? If so please mention
these.

6. Do you use cfengine mainly to warn about problems or to éxthutomatically

7. Do you think that it is desirable to minimize the amountfehgine output (faults, etc) which
is sent to the administrator? Or would you prefer to see more?

8. Briefly, what kind of network model do you have? - Firewalfould you use cfengine on
the firewall? - Central file server with NFS clients (other figstems) - Many distributed
file-servers.

9. Do you use cfengine for garbage collection? i.e. file aratess tidying. If so, what kind of
policy do you use to decide which types of file should be ditete

10. Do you run NT? If so would you like to have the same kind wiiaidtrative model there, or is
the domain server administration model adequate? How dadgali with garbage collection
inNT?

11. Do you feel that cfengine saves you time in performingmedasks?

12. Does cfengine simplify communication of system poktwywéen cooperating administrators,
by having a single configuration file(set) which is self-doenting?

The results of this survey (from only around thirty sitegjitated that the concept of con-
vergence was still largely not understood by those whoeepThis is particularly depress-
ing, since it is one of cfengine’s main benefits over othetvgafe. Of course this does not
mean that its users to not reap the benefits of convergeneag®ie’s NFS mount model
is apparently not in widespread use. No reasons were givehif but it might be reason-
able to assume that few users are willing to change their @dtiges and adopt a global
naming convention for their file-systems. Those users whaéling have indicated plans
to move to use of AFS or DFS file-systems which eliminate tredlrfer the mount model,
since the purpose of the model is essentially to emulate tiilessystem name spaces using
the NFS. From the returned questionnaires, cfengine ratgd(@-10) on all of the points
asked about, except for the mount model. No significant fanatity was missing, but
more flexibility in platform independent mount options wasgjuested by one user. There
is also a constant stream of requests for new and more aaditeediting commands.
One user compared cfengine to Tivoli. In spite of Tivoli'sst@nd additional man-
agement abilities, above and beyond mere system admirostré& was possible for the
user to compare the actual configuration and maintenancelsioth this user’s judge-
ment cfengine’s class model was at least as powerful asiBivoéchanisms for selecting
groups of hosts. Tivoli’s strength was in encrypted commation links between clients
and servers (This is allowed by cfengine but it's need isdbrgbviated by avoiding net-
work dependencies). On the other hand, Tivoli has a very ¢exrgrchitecture of clients
and servers, with many components. Cfengine is just a simgigram and a single file
which has an appealing simplicity for basically the samecfiamality. Tivoli’s trust mod-
el is based on CORBA and encrypted connection to trustediTivanagement servers,
while cfengine’s trust model is based entirely on the ségwifiits configuration file. This
user had no conclusion in comparing the two systems sincedsestill in the process

of evaluating both. Another user (working on behalf of IBMated Tivoli and favoured

cfengine, hoping to eventually combine the two since Tiwlprimarily a management
scheme which relies heavily on shell scripts. Owing to IBMigerests he was forced to
use Tivoli, like it or not. At least two other IBM centres aradwn to use cfengine on a
substantial number of hosts, one of which has reportedairajinions.

Several users using Openview and similar tools complairiebdeoverbosity of those
packages, i.e. that the volume of output generated by thaderass was so large that it
became simply noise. The cfengine approach of silently dixyroblems was cited as a
positive attribute.

There have been few negative comments about cfengine. Jhigtisurprising from
users or potential users, since those who use cfenginetliedi those who do not never
bother to respond to the questionnaire. The harshestsofiacademic work tend to be
journal referees from behind their blanket of anonymity.e&\vhe dozen or so referees
which have vetted the publications on this work have maderitical comments about
cfengine or the immunity model, though one referee refetoea particular system policy
example as ‘naive’ without further qualification. In pulbled work cfengine has been
noticed but no detailed comments have been made concetsinggiroach; a small number
of supportive comments have appeared in ref. [7]. A disaumsesf ways of generalizing
cfengine’s approach was provided in ref. [8].

Direct questioning of users and other researchers at cemfes has not produced any
criticism either, in spite of serious attempts by the auttwoprovoke some. This could
mean that cfengine is considered unworthy of attentionjtisitmore likely that it simply
reflects the generality of approach (it is more difficult tdicize general approaches than
specific details). The originators of alternative systeministration approaches have re-
mained largely stiff lipped when approached. Only the autifdHost Factory has made
any comment at all about cfengine; in this case positivehgges because cfengine is not
directly in competition with Host Factory. There seems dfiere to be no open disagree-
ment that cfengine has adopted a sensible approach to sgstefiguration. The direct
criticisms which have been levelled at cfengine have bedgheatevel of disagreements
about cosmetics, such as the names used in the languagenar gquialms about the de-
fault behaviour. This has occasionally led to changes beiade to the detailed semantics
of specific operations, but only after a careful evaluatibthe consequences. The chief
aim has always been to preserve the idea of convergent, shéviour. Additional options
to key operations are also frequently requested.

In addition to the user survey it is possible to gauge an isgiom of its suitability from
messages sent to the Usenet discussion group. Figure w8 shiew data points indicat-
ing the order of magnitude of the sites which use cfengineoturdinate their networks.
This table indicates that the cfengine model scales, a@afigntithout limit. This is an
indication that the abstraction model is sufficient for dreglvith differences between sys-
tems in a manner which is independent of the number of mashit&at the table does not
show is any great diversity in the machine parks at the naiites] so variation in operating
system type is not reflected in these data. On the other haadype of operating system
is just another class as far as cfengine is concerned, ssttbigdd not play any major role
in the discussion.

Most users report that cfengine saves them time. Otherdhsdiysince using cfengine
they do not have less work to do, but that their work is moredpmtive, i.e. that they can
spend time on other tasks. Before adopting cfengine, mdag siould use distribution
schemes, such adist , tar together with shell scripts to perform their initial ind&al
tions. Most had no way of subsequently checking the intggfitheir systems.

Before we deployed cfengine, when we’d install a machind tae'up a group
of files from a "central install” area, and then untar it ontolzase os.

Site size
iu.hioslo.no 30 hosts, Solaris,GNU/Linu
Unix OS vendor 45 servers in Europe
American University | 200 hosts, SGI, Sun
Space agency 300 hosts, SGI
Scandinavian University 450 hosts, type unknown
Telecom company | 2500 hosts, Sun

Figure 5:Some orders of magnitude for sites running cfengine fromglsiconfiguration.
The names are not given, for reasons of privacy.

The problems with this are as follows:

1) Sometimes we deploy a new file to all machines that are uptathe
nasify areas, but any machines that are down when we distrithe update
stay with the old version forever.

2) Sometimes we deploy a file to all machines that are up, bubwet to
update one of the "central install” areas.

3) Each minor OS revision has it's own "central install” areao sometimes
we update the irix6.2 tree, but forget to update the irix@e@1t

And so on. "It keeps getting worse”.

The immunity model solves these issues, since each hosspemsible for updating it-
self from a file repository; also the cfengine class model @satke differences between
operating system types a non-issue.

The following comment summarizes the response of most udefengine.

Quite often we had to reinstall a machine because it was gintp&n trying to

change configuration manually. With cfengine we are ableito the system
very comfortably. Also, if a machine is not up when the chasigeade, it gets
fixed whenever it comes back on line.

The fact that cfengine is being run every hour also has haditeside effect
of people doing things the right way. Before it was so easyxtedimething
on a machine (with the intention of adding this to the inssaliipts) and then
forget about it. Every time the machine was reinstalled @mnstimes even
rebooted) the problem came back. Now everybody is awarerthay changes
will be removed within the hour if they cheat.

On the whole | think that cfengine hasn't decreased our wemy yuch but
the results have increased. We are able to increase uptimediability and
probably also security.

A Swiss organization adds,

Cfengine hides many of the system dependencies in systemisightion.
With cfengine, | can delegate tasks to our operators, whiehtlaen able to
maintain rather complex configurations.

The common syntax on all systems simplifies the problem mfseptation:

due to the well known syntax and the concentration on onegdifdiit is
much easier to solve a problem if the main system manageniacation.

These comments indicate the benefits of the convergenceaxgiprin particular, the ref-
erence to ‘cheating’ by trying to perform changes by handdase of the immune system
moving against a careless mistake, rather than an outgieiatthr configuration error. This
raises an important point however which has caused somedepnslin the tests at Oslo
college.

The immunity model relies on the fact that the immune systef@n@ine) will be run
regularly to check the state of the system against its progi@n some systems this has
proven to be a problem. A comment from HAL,

..nearly 50 percent of our trouble calls arise because dieagidn’t get run
and needs rerunning. Then the machines are fine again...

At Oslo College, GNU/Linux machines have proven to be a problNormally cfengine
is run hourly bycron . While solaris machines simply run ad infinitum, GNU/lincoon
crashes regularly on the PC'’s for a reason which has neverd$mésfactorily determined.
This means that cfengine can only be run by network conne¢tiiengine can then restart
cron), but sometimes the network daemon crashes on GNW/Byatems also. In this
case, cfengine never gets run without a direct login by a lun@ne speculation about
this was that the clock drift on PC hardware was so large ¢han became confused
and terminated. This theory was corroborated by the largekallrift and the failure of the
network time protocol NTP to keep the GNU/Linux PC’s syncatired. Fortunately, owing
to the adaptive lock scheme cfengine can never be run ton,aftea simple script of the
form

while (1)

cfengine
sleep 3600

end

ought to suffice, perhaps along side the other alternativest turned out this was not the
correct explanation. The correct explanation turned obetthat cron would die accessing
input files stored on NFS file-systems. This is presumablygibuhe Linux kernel. The
cure has been to make a copy of the cron and cfengine inputdiiiedbe local disks of
GNU/Linux hosts. Since this policy was adopted no furtheyems have been observed
with cron.

5.9 Resource efficiency

An objection which system administrators sometimes raissonnection with a new tool
is that the size of a compiled program (the ‘binary’) makeséfficient compared to shell
programming. The Unix philosophy has always been to malsedfbbémall programs which
do one thing well, then combine them. While this is an adniérabilosophy for interactive
tools, it is not an efficient approach for batch programs.

Figure 6 shows some figures which help to understand thig.poithe table, one sees
that cfengine’s binary footprint is approximately twicelasye as Perl 5, and about twenty
times larger than that of the Bourne shell. The residenssif¢hese binaries (the amount
of them paged in for execution at a given moment) is only aofagt two different in the
worst case. These figures are not meaningful comparisoheingelves however, since the
average perl script needs to load several modules and ingpiearvery large user program
in order to approach the functionality of cfengine. Thislpesup all the size measurements

Solaris 2.6| GNUJ/Linux libc5 | solaris RSS
cfengine| 2125096 885160 868
perl 618256 455096 756
sh 88620 318612 412
sed 246508 53784 632
awk 84560 98996 636

Figure 6: A comparison of memory imprints compiled with gcc on Sol&® and
GNU/Linux. Both systems use shared libraries. The largee sif the Solaris binaries
is due to its RISC nature. The proportions are approximatiedysame for both systems.
The size of a shell program is always compounded by the sfzgseti commands used
in the script. The size of a perl program is compounded bytaudil modules at about
two percent of the perl binary, or by shell commands whichiamger. The final column is
the resident memory size of the three for Solaris 2.6 bisataken from UCBs aux in
the run state. The difference between them here is mucthslass, the entire program text
needn’t be paged in at once.

by several percent. For the shell, the situation is much &drke size given in the table is
only the size of one shell interpreter. To this one must aédsthe of the shell commands
being executed and perhaps sub-shells.

In order to approach the functionality of cfengine one woukeed to make extensive
use of Unix pipes. This adds the binary imprint of each comuntanthe interpreter and
furthermore it significantly adds to the process dispatchex@cution time. Pipes introduce
waits and synchronization issues, while heavyweight pgses add time through context
switching and 1/0 access. Shell commands work on a lineiimythasis which is quite
inefficient. Both cfengine and perl compile their input attime directly to memory.

It is thus difficult to gauge any real difference in the raat¢é memory usage while
using cfengine and while using traditional script prograimgn What one does save is
the time to process the input and the time to respond to it.h Béngine and perl cut
down on the number of waits and context switches as comparsidetl. They also make
a considerable saving in the time spent understanding abdgdéng a program. It is
quite hard to write a program with bugs in the cfengine larggusince it operates at such
a high level. The lower the level of the programming, the tgethe scope for making
mistakes. With the rapid increase in processor speeds anmbngevailability, differences
in resource usage becomes an almost irrelevant issue. @/maportant about cfengine is
the conceptual simplification it offers.

5.10 Future considerations

The theoretical basis for cfengine, combined with commealigited and received by the
author, seem to indicate that the basic concept of cfengigeund. Any problems which
exist lie in the details of implementation rather than indamental shortcoming. Many
of these can be attributed to a lack of insight into what wadlyeneeded at the outset.
Experience in using cfengine over a period of seven yearsgatiied many of these issues
and it has been more than a year since any major new featusdmska sought by the user
base. This, naturally, does not mean that cfengine is perfiethe author’s own opinion,
it is a toy solution, built with very limited resources. Giva fresh slate then, what details
of cfengine would be changed? What lessons can be learneasaddo improve version
2 of cfengine?

Cfengine’s least elegant feature is its language interfadds has grown fairly hap-
hazardly over the course of its evolution, and extendedraaegly, with certain solutions
being introduced in such a way as to minimize the burden ofighaather than to be ideal.
A complete rethink of the language interface, not mereljugtaus but constructive, would

be the author’s first choice.

The actionsequence approach to task ordering is not coetpkatisfactory. It is based
on the idea that cfengine will be run regularly enough to dvepetition of global events.
It might prove to be a limitation with respect to feedback noets. However since no better
approach is currently forthcoming there is no pressing rieedview this immediately.

Pattern matching criteria in file parses are presently &ohto regular expressions based
on the filename. A general pattern matching structure inolythe ability to filter by file-
type, owner, group and permissions, perhaps analogous t&Gh structures would be an
improvement. Whether or not such structures would be widelgful is unclear, but for
the sake of completeness, they need to be added. This waddalp to secure against
the covert phenomenon bfuffing, whereby users attempt to hide certain types of files by
giving them false names. The ability for users to encryptpress and otherwise conceal
files which contravene system policy is likely to be a Red @ugpe contest, which cannot
be won unless covert mechanisms are implemented at opgsgsitem level. This parallels
the American FBI debate about encryption technologies.

Interface control proved to be too simplistic when confezhtvith multi-homed hosts.
Several changes were made to improve this part of cfengimgtoto find the introduction
of routing sockets in BSD and other Unices, and lack of ioptlans in GNU/Linux broke
the code for setting interface parameters. This code nedus fixed.

The mount model, which was modelled on a scheme used at theidity of Oslo,
and mimics wide area file-systems like AFS and DFS, has bepoputar. It has not been
criticized, but most sites seem to opt for one of the more aded file-systems like AFS,
rather than trying to coax NFS into a more orderly structukefew users have actually
praised the approach, but they are a minority. Many authbisao use the NFS prefer the
automounter. Cfengine’s interaction with the automouhgsrnot always been ideal. Users
who link files to automounted directories often experiemeetint storms’ as cfengine stat’s
the destination files (on automounted partitions) and iegakwave of automounting, with
performance results.

Unix needs some way of clearing hanging zombie processgsdoesses whose pro-
cess group reverts that of ‘init’. Poorly written softwaeads to an accumulation of zombie
processes which use up process slots. This can eventuadlydehe system’s demise.

Module communication needs to be improved. In particulammunication through
variable passing is weak and limited. It would also be adagebus if modules could set
variables.

6 Summary

In summary we return to the key questions asked at the stastexfplained in the tex-
t, no unambiguous conclusions can be drawn from the eviddrmeever the following
impressions seem to emerge:

Does the immunity model increase our understanding of tbelems of system ad-
ministration?Yes, in the sense that in order to automate we must find caglsdilonships
which under-pin the operation of the system. In this resgdstsimilar to performance
tuning. It adds a discipline which was previously absentisiscipline does not restrict
what can be accomplished, but it is well-defined given an aghmative policy and can
yield a positive effect on the way that system administratioperformed.

Does the model have any predictive pow&te predictions of the model are scalability
and improved stability. Evidence for both of these quaitias been observed.

Does the generalize earlier attempt¥@s, in the sense that the class model and abstrac-
tion layer make universal interface for scripting and mughdtionality has been absorbed
into a domain specific language.

Does the immunity model save system administrators timie® is clearly true, but it
does not imply that administrators will have less to do. lyaneans that their time can be

spent on higher level issues.

Does the model result in a quicker solution of problems whey bccur?Both answers
to this question are possible. What is important is that tleel@hguarantees a response,
even in the absence of a competenthuman. Is there a probd¢artimmune model cannot
solve? Clearly this is so. That is not an argument againgtibeel only an acknowledge-
ment of the fact that there are more problems than solutindgfzat there is no such thing
as a universal tool.

Is the immune model immune to complete failuiég#ls depends on the nature of the
operating system and on policy. In the long term, this cdrnses race to stand still.

The difficulty of collecting objective evidence of the susser failure of models of
system administration from wide user bases is a hindranega Eollection will probably
always be confined to a single site since foreign sites arg wagiving out information
about themselves to others. This is awkward because thevalostble information comes
from human reports. Machine metrics tend to have only a sij@ificance bordering on
the intuitively obvious.

References

[1] P. Matzinger. Tolerance, danger and the extended farAiyiu. Rev. Immun12:991,
1994.

[2] M. Burgess. Computer immunologfroceedings of the 12th Systems Administration
conference (LISApage 283, 1998.

[3] M. Burgess. Automated system administration with fesaekbregulation. Software
practice and experienc@8:1519, 1998.

[4] M. Burgess and D. Skipitaris. Adaptive locks for freqtigrscheduled tasks with
unpredictable runtimesProceedings of the 11th Systems Administration conference
(LISA), page 113, 1997.

[5] P Hoogenboom and J. Lepreau. Computer system perforenprablem detection
using time series model®roceedings of the USENIX Technical Conference, Summer
1993 page 15, 1993.

[6] M. Burgess and R. Ralston. Distributed resource adrration using cfengineSoft-
ware practice and experienc27:1083, 1997.

[7]1 S. Traugott and J. Huddleston. Bootstrapping an inftastire. Proceedings of the
12th USENIX/LISA conference on system administrationl;1B998.

[8] A.L. Couch and M. Gilfix. It's elementary, dear watson: giping logic programming
to convergent system management proces§receedings of the thirteenth systems
administration conference LISA, (SAGE/USENP§ge 123, 1999.

