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Abstract
IP Filter is an Open Source packet filtering en-
gine that is available for a number of operating 
systems, including Solaris and FreeBSD, Open-
BSD and NetBSD.

IP Filter comes with so-called stateful packet 
filtering. In the case of TCP, the state engine not 
only inspects the presence of ACK flags, or 
looks at source and destination ports, but it in-
cludes sequence numbers and window sizes in 
its decision to pass or block packets. This 
greatly reduces the window of opportunity for 
malicious packets to be passed through the 
packet filter, even in the case when source and 
destination ports and addresses are known.

The original way of performing this in IP Filter 
produced a number of problems. The main 
problem being that IP Filter assumed, when it 
detected packets traversing through it, that the 
destination would also see the packets. In the 
case of packet loss this is not always true. Fur-
thermore, it previously looked at window sizes 
symmetrically: the window size was treated as a 
relative upper bound for new data that was sent, 
and the negative window size was treated as a 
lower bound (for retransmissions).  There is no 
apparent reason for doing this, and it will be 
proven to be invalid. Additionally, the window 
size taken as the upper bound for new data was 
the last window advertisement seen. In case of 
retransmissions this meant a fall back in al-
lowed data which was also incorrect.

The new state engine does not have these prob-
lems. The main design criteria was to never as-
sume anything, but to only take information for 
granted when it can be proven to be correct. 
When implementing this design in IP Filter, it 
turns out that some criteria must be relaxed in 
order to be compatible with other code within IP 
Filter.  These consequences will be discussed. 
Furthermore, some hints will be given on how 

to improve the implementation of the state tim-
eouts.

The paper will conclude with experiences with 
the state code and list future work on the state 
code.

1. Introduction
In recent years, more and more networks with 
sensitive or even business critical data on them 
are being interconnected. Simultaneously, 
hacker activity has grown tremendously because 
of freely available hacker tools. In order to pro-
tect networks, so-called firewalls are deployed 
that protect against hacker activities. One of the 
ways to implement a firewall is to make use of 
so-called packet filters.

TCP/IP
In order to understand the following of this ar-
ticle a small introduction to TCP/IP is neces-
sary. TCP is a protocol that runs on top of IP. IP 
takes care of delivering packets. For the remain-
der of this article, it is relevant that each IP 
packet contains two addresses: the address of 
the source of the packet and the address of the 
destination of the packet. TCP adds a reliable, 
connection oriented service to IP. It makes sure 
that there is a reliable data stream between 
source and destination. TCP avoids duplication 
of transmitted data and avoids delivering data 
out of order.  In order to be able to setup mul-
tiple connections between two hosts,  TCP adds 
so-called ports to IP addresses. These ports 
identify the connection endpoints on the source 
and destination. The combination of source port, 
source address, destination port and destination 
address are unique for every TCP connection.

TCP uses a three-way handshake to setup a con-
nection. The source sends a packet with a spe-
cial flag set called the SYN flag and with the 
so-called sequence number field (or for short 



seq field) set to some initial value. These se-
quence numbers are used to uniquely identify 
each octet (the network lingo for 8 bits) of data 
in the connection. Counting starts at the initial 
sequence number. If the destination is willing to 
accept the connection, it sends a packet back 
with the SYN flag set as well. Furthermore an-
other flag, called the ACK flag, is set.  When 
the ACK flag is set, the value in the acknowl-
edgement (or ack) field is equal to the number 
of the next unreceived octet. In this case the 
ACK flag acknowledges the first packet which 
only contains the SYN flag but has no payload 
octets. To be able to acknowledge this packet 
anyway, the SYN flag is also counted as one 
octet of data. The third packet then acknowl-
edges the second packet by also having its ACK 
flag set and with the ack field set to the ap-
propriate value.

There is an additional field in the TCP packet 
that is relevant in this article: the window size. 
The window size determines how much data a 
host is willing to accept. It thus serves as a flow 
control mechanism (no more than the window 
size of data will be in transit over the network). 
When a host wants to end the connection, an-
other three-way handshake takes place. The dif-
ference with the initial one is that in this case 
not the SYN flag is used but the FIN flag. Simi-
lar to the SYN flag, the FIN flag also counts as 
one octet of data.

It should be noted that this is a very short intro-
duction to TCP. The flags and fields relevant to 
the understanding of this article are covered but 
nothing more.  In reality, the protocol has many 
more features and extensions. In order to get a 
more thorough understanding, the reader is re-
ferred to [RFC793] , [RS1] and [RS2].

Packet Filtering
Packet filtering has proved to be a handy tool to 
put access controls to IP traffic. Packet filters 
can be used to block IP packets based on certain 
criteria such as the protocol used and various 
protocol characteristics.  In early packet filters, 
filtering decisions were made based solely on 
the packet that is currently inspected. Data like 
the source and destination addresses and in 
UDP and TCP cases the source and destination 
ports could be used in the filtering decisions. 
Even the well known ’established’ keyword, 
was based on static information (it inspected the 
presence of the ACK and RST flags in TCP re-
turn traffic [IOS12, access-list (extended)]). 
Such filtering could be very well used to protect 

against spoofing attacks where the attacker 
would send packets that seem to originate from 
systems on the inside of the packet filter.

In recent years, the underworld has produced 
more and more tools exploiting the static nature 
of this generation of packet filters. A simple 
form of probing is to send packets with the 
ACK flag set (further referred to as an ACK) to 
a target host. This way one can determine if the 
target host is listening on a port without easy 
detection [UM, NMAP]. Denial of service tools 
exist that are able to bypass static filters [BR].

In order to be able to withstand these newer 
probes and attacks, filters must somehow keep 
state information on what is flowing through the 
filter. The filter can then check if an ACK actu-
ally belongs to a valid connection. Packet filters 
that keep such state information are called dy-
namic or stateful packet filters. Apart from be-
ing able to block more unwanted traffic than 
static filters, an important advantage of stateful 
packet filters is that one does not need to explic-
itly permit return traffic thus simplifying access 
list administration.

In some packet filtering engines, stateful packet 
filtering for TCP and UDP traffic is imple-
mented in a very simple way: namely by storing 
the source and destination addresses and ports 
in a state table. While this is a lot safer than the 
older ’established’ method where ACK’s are 
always passed, this still is not as secure as can 
be. Ideally we only want those packets to pass 
the filtering engine that are absolutely necessary 
for the correct functioning of the TCP session. 
Such a way of filtering will at least reveal mali-
ciously inserted packets and might protect 
against yet unknown vulnerabilities.

2. IP Filter’s stateful 
packet filtering
IP Filter is a TCP/IP packet filtering engine that 
runs on a several Unix platforms. It has been 
used by the author for several years in a variety 
of systems. It has a very rich set of features 
from basic filtering to Network Address Trans-
lation in various forms and includes support for 
transparent proxying. For a complete descrip-
tion of all features see [IPF]. 

Ideally, the packet filter has a policy of blocking 
everything that is not specifically allowed. For 
TCP sessions, there is a rich set of information 
available on which to base the decision to block 
or pass a packet. We already described methods 



that look at ACK flags and source and destina-
tion ports.  In IP Filter, also the ack and seq 
fields are taken into account, further closing 
down the window of opportunity for abusive 
packets. In the remainder of the article the TCP 
protocol is assumed for all packets and all filter-
ing.

Old stateful filtering description
Whenever a packet is allowed by the filter code 
to pass through the filtering host, the filter code 
allows for the creation of a state entry. New 
packets arriving at the filtering host are first 
matched against the state entry table. In case of 
a match, the state entry is updated if necessary 
and the packet is allowed through.  First, the 
source address, source port, destination address 
and destination ports are matched. If a match is 
found, a special piece of code is executed that 
inspects if the ack and seq fields are valid for 
the given state entry. This code is the core of the 
TCP state engine.  In Figure 1, a simplified 

version of this particular code can be found; ex-
ception handling, e.g. packets not having the 
ACK flag set, and some initializing code, not 
relevant to the discussion below, are left out.

The code roughly works as follows: the pointer 
is points to the state entry that matches the  
source and destination addresses and ports. It 
contains the state of the connection as seen from 
the source of the packet that led to the creation 
of the is state entry. Among others it contains 
the last seen seq field from the source is_seq 
and the last seen ack field from the source 
is_ack. Both is_ack and is_seq are over-
loaded, however: if a packet is matched that 
travels from the destination to the source, 
is_seq is filled with the ack field of the 
packet and is_ack with the seq field of the 
packet. The state entry also contains the last 
seen window values, both from the source 
is_swin and the destination is_dwin. 

        /*
         * Find difference between last checked packet and this packet.
         */
        seq = ntohl(tcp->th_seq);
        ack = ntohl(tcp->th_ack);
        source = (ip->ip_src.s_addr == is->is_src.s_addr);

        if (source) {
                seqskew = seq - is->is_seq;
                ackskew = (ack - 1) - is->is_ack;
        } else {
                ackskew = seq - is->is_ack;
                seqskew = (ack - 1) - is->is_seq;
        }

        /*
         * Make skew values absolute
         */
        if (seqskew < 0)
                seqskew = -seqskew;
        if (ackskew < 0)
                ackskew = -ackskew;

        /*
         * If the difference in sequence and ack numbers is within the
         * window size of the connection, store these values and match
         * the packet.
         */
        win = ntohs(tcp->th_win);
        if ((seqskew <= is->is_dwin) && (ackskew <= is->is_swin)) {
                /* packet matches the state entry */
                if (source) {
                        is->is_seq = seq;
                        is->is_ack = ack;
                        if (win != 0)
                                is->is_swin = win;
                } else {
                        is->is_seq = ack;
                        is->is_ack = seq;
                        if (win != 0)



                                is->is_dwin = win;
                }
                do statistics;
                set timeout values;
                permit packet to pass;
        }
        /* packet does not match the state entry */
        deny packet to pass;

Figure 1: Old state code implementation

When a packet comes in, the variables seq and 
ack are set to the respective fields in the TCP 
packet. Then two values are calculated: se-
qskew and ackskew. These represent the ab-
solute value of the difference of the value of the 
seq respectively the ack fields in the packet with 
is_seq respectively is_ack. When se-
qskew is smaller than or equal to the last ad-
vertised destination window and ackskew is 
smaller than or equal to the last advertised 
source window the packet is matched and the 
state entry is updated accordingly.

3. Analysis of the old 
model
This section will give 2 examples of situations 
where the old state engine made some wrong 
decisions. In the examples, some packet traces 
will be shown. Packets will be shown in the fol-
lowing format, in the order they are sent:

A→B 0:1000 win 2000 ack 1000 N

This line identifies a packet that is sent from A 
to B. The packet contains data starting at se-
quence number 0 up to but not including 1000. 
The length of the data section is thus 1000. Fur-
thermore, the packet contains a window adver-
tisement of 2000 octets and it acknowledges all 
data sent by B up to but not including sequence 
number 1000. The number N at the end of the 
line means that this is the N-th packet that the 
filtering hosts sees. In case the ACK or WIN 
values are not relevant for the example, they are 
omitted. Finally, it is assumed that none of the 
packets are fragmented.

Example 1
Suppose a connection is setup normally, and has 
entered the state table. Suppose further that the 
first packet below matches the state table and is 
passed through:

From Content Nr
B→A win 2048 ack 0 1

A→B 0:1000 2

B→A win 1048 ack 1000 7

A→B 1000:2000 3

B→A win 2048 ack 2000 4

A→B 2000:3000 5

B→A win 2048 ack 3000 6

Looking at this trace, one sees a normal TCP 
session where the first ACK sent by B is some-
how delayed and arrives at the filtering host af-
ter the fourth ACK.

The state table now looks as follows during the 
above session (the state entry values shown are 
those before the packet has been matched by the 
state code):

state entry packet content code
nr is_seq is_dwin seq ack win seqskew
1 not relevant 0 2048 -
2 0 2048 0 0
3 0 2048 1000 1000
4 1000 2048 2000 2048 999
5 2000 2048 2000 0
6 2000 2048 3000 2048 999
7 3000 2048 1000 1048 2001

Now either  host A can send some data to B or 
host B can send a retransmit of packet 6:

A→B 3000:4000 8a

B→A win 2048 ack 3000 8b

These packets lead to the following state en-
tries:

8a 1000 1048 3000 2000
8b 1000 1048 3000 2048 1999

Because seqskew is greater than is_dwin, 
both packet 8a and 8b will be blocked. The 



connection can not proceed anymore: whenever 
A will send a packet, it believes it can send the 
data 3000:4000 and this will always be blocked. 
Packets from B will always ack 3000 and thus 
will also be blocked. This results in blocking 
packets that are part of a valid connection. In 
fact, the connection just hangs.   

Example 2
Suppose that in an established TCP connection 
the following packets are sent:

From Content Nr
A→B 0:1000 1

B→A win 4000 ack 1000 2

A→B 1000:2000 3

A→B 2000:3000 4

A→B 3000:4000 5

A→B 4000:5000 6

B→A win 2000 ack 5000 8

B→A win 4000 ack 5000 7

Suppose that all packets actually reach their 
destination in the order sent, except for the sec-
ond and third ACK. The second ACK is delayed 
somehow between host B and the filtering host. 
Furthermore, both ACKs are dropped some-
where between the filtering host and A. Suppose 
also that the first 2 packets are such that they 
are passed through the filter.

The relevant fields in the state table look as fol-
lows during the above session (again, the state 
entry values shown are those before the packet 
has been matched by the state code):

state entry packet content  code
nr is_seq is_dwin seq ack win seqskew
1 not relevant 0 -
2 0 1000 4000 999
3 1000 4000 1000 0
4 1000 4000 2000 1000
5 2000 4000 3000 1000
6 3000 4000 4000 1000
7 4000 4000 5000 4000 999
8 5000 4000 5000 2000 1

Since seqskew is smaller than is_dwin in 
all cases, these packets will pass the filter.

Host B will only retransmit the ACK when:  

1. It must send a window update

2. When it is piggy-backed on some data.

3. When it receives a retransmit.

4. When the TCP keep-alive timer goes of.

For the sake of the example we can assume that 
cases 1 and 2 are not applicable. Host A how-
ever will find that the data packet in 3 is not yet 
acknowledged. It will therefor retransmit it. The 
retransmit occurs because the acknowledgement 
did not arrive in time and thus host A will only 
try to retransmit the first unacknowledged 
packet. It is assumed here that host A complies 
to section 3.1 of the proposed standard 
[RFC2581]. 

This leads to the following packet:   

A→B 1000:2000 9

and corresponding state table values:

9 5000 2000 1000 4000

And thus, because seqskew=4000 is greater 
than is_dwin=2000, the retransmit gets 
blocked unnecessarily. After a while, A will 
give up retransmitting the packet and drop the 
connection on his side.

Both examples show that the state engine is not 
coping well with out of order packets and 
packet loss. In order to fully understand the new 
state filtering engine that will be described in 
the next section, it is crucial to see why the old 
state engine was invalid: when the filter engine 
sees a packet, it adjusts its state administration 
accordingly.  However, one can not be sure that 
the packet actually reaches its destination. Re-
ally, the only thing one can be sure of is that the 
sender did send the packet (given the assump-
tion that a valid packet is considered to be origi-
nated from the sender and not spoofed)

4. Design of the new 
model
The following points made up the design strat-
egy of the new code:

1. Never assume anything: the state adminis-
tration should only be based on facts.

2. The state filtering should take all kinds of 
TCP behavior into account. This includes 
retransmissions and window probing. In 
fact every forwarded packet passes twice 



through the filter code. The first pass is on 
the input queue and the second pass on the 
output queue. So every forwarded, outgo-
ing packet looks to IP Filter as a retrans-
mission!

3. Never block packets such that a TCP ses-
sion can hang.

4. Make the window of opportunity for 
abuse as small as possible. Abuse is de-
fined here as sending malicious data that 
will be accepted as valid data or sending 
malicious ACK’s that will be accepted as 
valid ACK’s.

5. Minimize the amount of blocked packets 
that belong to valid sessions because they 
will cause false alarms.

In general, when setting bounds on what 
constitutes valid packets, it will be pos-
sible that valid packets will be blocked. 
As an example: suppose that an ACK only 
packet is somehow delayed in transmis-
sion and pops up when the real connection 
has moved way forward. When this de-
layed ACK gets blocked, it will cause a 
false alarm but the blocking will not have 
any effect on the TCP session it belongs 
to.

Whenever the filter sees a packet that it consid-
ers valid, it must assume that the sender sent the 
packet. If a valid packet arrives at the filtering 
system:

1. The filter clearly sees that some data is 
transmitted.

2. The filter sees the window advertisement 
done by the sender.

3. The filter can conclude that if the ACK 
flag is set, and the value of it is S, the 
sender has received all data up to at least 
sequence number S. 

The real challenge lies in the decision what con-
stitutes a valid packet. In order to determine the 
validity, lower and upper bounds will be derived 
both for the ack values in a packet and for the 
data the packet contains. Note that it is assumed 
that all packets within a certain TCP session are 
routed through the system where the packet fil-
ter is installed.

Boundaries for valid data
Suppose host A sends a packet to host B con-
taining the data interval [s, s+n) (meaning that it 
contains data starting with sequence number s 
and having length n). Between A and B there is 
a packet filtering system F that routes all pack-
ets sent between A and B. 

The upper bound determines when data is al-
lowed to be sent:

last octet in packet ≤ maximum octet A is 
allowed to send

This is equivalent to:

s + n ≤ maximum octet A may send + 1

≤ max
packets sent by B

seen by A

{ }ack + win

the right hand side meaning the maximum value 
of the sum of the ack and win fields from pack-
ets that are sent by host B to host A that are ac-
tually received by A.

Thus, 

s + n ≤ max
packets sent by B

seen by F

{ }ack + win (Ia)

because a packet received by host A must have 
been seen by F.

There is an exception to (Ia): in TCP, when host 
B advertises a zero window, host A will start 
the so-called persist timer that will cause it to 
reprobe the B’s window persistently until it is 
non-zero. In doing so, A will send at least the 
first unacknowledged octet of data to B. This is 
the only accepted situation where data may be 
sent out of advertised window boundaries 
[RFC793, section 1.5].

On BSD systems, a window probing is always 
done with a packet containing one octet of data 
[GW, page 827]. This length was assumed for 
other systems as well and up to date, no prob-
lems seem to arise. So the real upper bound is:

s + n ≤ max
packets sent by B

seen by F

{ }ack + max( )win,1 (I)



This upper bound will prevent passing of data 
the recipient did not intend to receive. A packet 
that is blocked because of this boundary was 
sent by the sender at a time that it knew that the 
receiver would ignore it. In case the assumption 
about window probes containing one octet of 
data is wrong, the boundary can easily be 
adapted by replacing the ’1’ by the appropriate 
number of octets, or by contacting the vendor of 
the code to ask him not to waste bandwidth and 
use 1 octet window probes.

It is harder to find a suitable lower bound: 
When host A sends some data, it will only send 
unacknowledged data.

For short:

s ≥ max
packets sent by B

seen by A

{ }ack (i)

Looking at the derivation of the upper bound, it 
follows that equation (I) is also valid as seen 
from the senders point of view. Thus:

s + n ≤ max
packets sent by B

seen by A

{ }ack + max( )win,1

⇒ max
packets sent by A

{ }s + n ≤

max
packets sent by B

seen by A

{ }ack +

max
packets sent by B

seen by A

{ }max( )win,1 (ii)

and thus, combining (i) and (ii):

s ≥ max
packets sent by A

{ }s + n −

max
packets sent by B

seen by A

{ }max( )win,1

≥ max
packets sent by A

seen by F

{ }s + n −

max
packets sent by B

seen by F

{ }max( )win,1 (II)

The lower bound will prevent retransmission 
from data that is known to be already received. 
So if the receiver actually did send  a packet 
containing such data it was somehow delayed 
during transit. Since the communication already 
moved on (otherwise we would not even be able 
to tell that the packet was an unnecessary re-
transmit) we can also be sure that the ack value 
on the blocked packet will at least have been 
duplicated (if not moved forward) in later pack-
ets from sender to receiver.

Boundaries for valid Acknowl-
edgements
Packets cannot contain an ack value for data 
that was not sent. This implicates that we have a 
clear upper bound for the ack value sent: An 
ACK from host A, with ack value ’a,’ can never 
acknowledge data that was not received by A.

Thus:

a ≤ max
packets sent by B

seen by A

{ }s + n

≤ max
packets sent by B

seen by F

{ }s + n (III)

This upper bound will prevent sending of 
ACK’s of data that could not have been re-
ceived. A packet that is blocked because of this 
bound is known to be invalid.

A lower bound for the ack value is much harder. 
One might say that the last received ack value is 
a lower bound as ack values tend to move for-
ward. If however, two packets both containing 
valid data are received out of order by the filter, 
then the last one received will be blocked. First 
of all, this is a false alarm and secondly, the 
sender will have to do a retransmission if the 
blocked packet contained valid data.



We might relax the above rule by saying:

a ≥ max
packet sent by A

seen by F

{ }ack or

packet contains valid data (according to 
(i) and (ii)

But also in this case, packets might get blocked 
unnecessarily when dataless ACK’s are re-
ceived out of order. Furthermore, the presence 
of valid data suppresses checking the ack value 
at all, which is not necessary.

Instead, a different approach was chosen. Cur-
rently, the following fixed boundary is chosen:

a ≥ max
packets sent by B

seen by F

{ }s + n −

MAXACKWINDOW (IV)

In natural language: An ACK is allowed if it 
acknowledges data from host B  that is not less 
than MAXACKWINDOW octets from the last octet 
of data seen by the filter. This last octet of data 
seen by the filter is of course larger than the last 
octet of data seen by host B,  the sender of the 
ACK.  However, MAXACKWINDOW is slightly 
larger than the maximum possible value of the 
TCP window field (66000) and thus it can be 
guaranteed that no valid ACK will ever get 
blocked.  This boundary seems like a cheap deal 
after all the trouble that went into the sequence 
number boundaries.  The observation is that an 
ACK of data that is already received will be ig-
nored by the receiver of the ACK. Thus the win-
dow in which ACK’s of received data are al-
lowed can be made very large. The larger the 
window, the smaller the chance of a delayed 
ACK being blocked. 

5. Implementation
Data structures
In order to implement checking of the derived 
boundaries, the following data structures are 
used:
 
   struct tcpstate {
        u_short    ts_sport;
        u_short    ts_dport;
        tcpdata_t  ts_data[2];
        u_char     ts_state[2];
   } tcpstate_t;

   struct tcpdata {
        u_32_t     td_end;    
        u_32_t     td_maxend;
        u_short    td_maxwin;
   } tcpdata_t;

The meaning of the various fields is as follows:

In struct tcpstate:

ts_sport source port   

ts_dport destination port

ts_data[0] source struct tcpdata

ts_data[1] destination struct tcp-
data

ts_state[0] source state (used for state 
timing)

ts_state[1] destination state (used for 
state timing)

Source and destination are defined by the packet 
that leads to the new state entry.

Struct tcpdata contains:

td_end maximum value of seq + len 
(boundaries II,  III and IV)

td_maxend maximum value of ack + 
max(win, 1) (boundary I)

td_maxwin the maximum window seen  
(boundary II)

Initializations
The above boundaries are valid in the middle of 
connections, but special treatment should be 
given for initializations when a packet leads to 
creation of a new state entry.

First the normal case is examined: the sender 
sends a SYN packet to initiate a connection. 
The question is how should the state entry be 
initialized such that following packets are able 
to pass. The possibilities for the next packet in 
this session are retransmission of the SYN and 
the receiver sending a SYN/ACK.

Both packets will be matched against bound-
aries I-IV.

1. Retransmission of the SYN

When  the initialization of  the state entry is 
done as follows:



 ts_data[0].td_end = SEQ + 1
 ts_data[0].td_maxend = SEQ + 1
 ts_data[1].td_end = 0
 ts_data[1].td_maxend = 0
 ts_data[1].td_maxwin = 1
 ts_data[0].td_maxwin = max(WIN,1)

Here SEQ and WIN are the values of the seq 
and win fields in the SYN packet. Note that 
ts_data[1].td_end and 
ts_data[1].td_maxend are not backed 
by actual data in the packet and have to be 
reinitialized once ’real’ data is available.

Then clearly, for the retransmitted packet:

s+n = SEQ + 1

s = SEQ

s+n ≤ ts_data[0].td_maxend (I)

s ≥ ts_data[0].td_end - 

ts_data[1].td_maxwin (II)

where s and n are defined as in section 4.

Since the ACK flag is not set in the retransmis-
sion, just assuming that the ACK flag was set 
and setting the ack value to 0 will result in:

a = 0

a ≤ ts_data[1].td_end (III)

a ≥ ts_data[1].td_end -
MAXACKWINDOW (IV)

Handling the absence of ACK flags in this way 
allows for an easier implementation since this 
exception is effectively eliminated.

2. Receiver sends a SYN/ACK

In this case, the falsely initialized fields can be 
set in the state entry:

ts_data[1].td_end = SEQ + 1
ts_data[1].td_maxend = SEQ + 1

Here SEQ is the value of the seq field in the 
SYN/ACK packet.

In this case,

s+n = SEQ + 1

s = SEQ

a = ACK

Clearly:

s+n ≤ ts_data[1].td_maxend (I)

s ≥ ts_data[1].td_end -
ts_data[0].td_maxwin (II)

the latter because ts_data[0].td_maxwin 
≥ 1

and:

a ≤ ts_data[0].td_maxend (III)

a ≥ ts_data[0].td_end -
MAXACKWINDOW (IV)

because the ack field of this packet acknowl-
edges SEQ+1 from the initial SYN packet.

The above analysis is correct for connections 
that enter the state table when being setup. 
However, IP Filter leaves the possibility for 
packets from the middle of a connection to lead 
to an entry in the state table. This can be handy 
when the system on which IP filter runs is re-
booted and existing sessions need to be pre-
served. The above analysis is no longer correct 
in such a case. The reason is that the above sce-
nario needs the history of the connection to be 
able to do its job. There are a number of ways to 
work around this lack of history. The first is to 
initialize the state variables such that the bound-
aries thus set will always include the boundaries 
that would have been set in case the history was 
known.

Another way of dealing with this is that the state 
code just pretends that it knows the history. 
When a packet comes in that would be blocked 
given the current boundaries but that would not 
have been blocked with the ’maximal’ bound-
aries in the previous paragraph, then the current 
boundaries are stretched such that it would have 
just passed the packet. This scenario will make 
the state variables gently converge towards the 
values that they would have had in case the 
whole history was known. The advantage of this 
method is that extending the window is an ex-
plicit action that  can be logged.

Neither of these methods have been imple-
mented yet.

Actual Implementation

In this section, the actual implementation is 
given in heavily annotated form. First the ini-
tialization part (which is done when a packet 
leads to a state entry:



   is->is_tcp.ts_data[0].td_end = ntohl(tcp->th_seq) + ip->ip_len -
                                   fin->fin_hlen - (tcp->th_off << 2) +
                                   ((tcp->th_flags & TH_SYN) ? 1 : 0) +
                                   ((tcp->th_flags & TH_FIN) ? 1 : 0);
        

The right hand side is an ugly way of specifying the TCP payload length of the 
packet. This is somewhat different from the initialization mentioned earlier. It is a 
generalization thereof that will allow the state engine to work in the T/TCP case 
[RFC1644, RS2].

   is->is_tcp.ts_data[0].td_maxend = is->is_tcp.ts_data[0].td_end;
   is->is_tcp.ts_data[0].td_end + 1;
   is->is_tcp.ts_data[1].td_end = 0;
   is->is_tcp.ts_data[1].td_maxend = 0;
   is->is_tcp.ts_data[1].td_maxwin = 1;
   is->is_tcp.ts_data[0].td_maxwin = ntohs(tcp->th_win);
   if (is->is_tcp.ts_data[0].td_maxwin == 0)
           is->is_tcp.ts_data[0].td_maxwin = 1;

These are directly taken from the earlier paragraph on initializations.

Figure 2: New state code initialization

The state matching code looks as follows:

   source = (ip->ip_src.s_addr == is->is_src.s_addr);
   fdata = &is->is_tcp.ts_data[!source];
   tdata = &is->is_tcp.ts_data[source];

By setting fdata and tdata the code below can be the same, regardless of the di-
rection of the packet. fdata represents the state variables for the sender of the 
packet that is investigated and tdata represents its receiver.

   seq = ntohl(tcp->th_seq);
   ack = ntohl(tcp->th_ack);
   win = ntohs(tcp->th_win); 
   end = seq + ip->ip_len - fin->fin_hlen - (tcp->th_off << 2) +
                ((tcp->th_flags & TH_SYN) ? 1 : 0) +
                ((tcp->th_flags & TH_FIN) ? 1 : 0);

Again the length of the payload of the TCP packet is determined and added to seq.

   if (fdata->td_end == 0) {     
           /*
            * Must be a (outgoing) SYN-ACK in reply to a SYN.
            */
           fdata->td_end = end;  
           fdata->td_maxwin = 1; 
           fdata->td_maxend = end + 1;
   }

When td_end equals 0, we assume that we have to do the initialization described in 
’Initializations: 2. Receiver sends a SYN/ACK’.

   if (!(tcp->th_flags & TH_ACK)) {  /* Pretend an ack was sent */
           ack = tdata->td_end;  
   

In case the packet does not have its ACK flag set, just pretend it was set by setting 
ack such that it will match the ack boundaries. Also set its window value to 1 

   } else if (((tcp->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) &&



              (ack == 0)) {      
           /* gross hack to get around certain broken tcp stacks */
           ack = tdata->td_end;  
   }

The code above is necessary because there seem to be TCP implementations that set 
the ACK flag in RST packets but always leave the value of the ack field 0. In such a 
case, pretend the ACK is valid.

   if (seq == end)
           seq = end = fdata->td_end; 

In case the packet contains no data at all, assume it is valid and only look at the ack 
value below. Passing this packet when the ack field is valid poses absolutely no 
threat. This code is meant to prevent false (or harmless) blocked packets.

   maxwin = tdata->td_maxwin;    
   ackskew = tdata->td_end - ack;

   if ((SEQ_GE(fdata->td_maxend, end)) &&
       (SEQ_GE(seq, fdata->td_end - maxwin)) &&
           /* XXX what about big packets */
#define MAXACKWINDOW 66000
       (ackskew >= -MAXACKWINDOW) &&  
       (ackskew <= MAXACKWINDOW)) {

SEQ_GE and later SEQ_GT implement sequence number comparison with modular 
arithmetic (see also [RFC793, section 3.3]

           /* if ackskew < 0 then this should be due to fragmented
            * packets. There is no way to know the length of the
            * total packet in advance.
            * We do know the total length from the fragment cache though.
            * Note however that there might be more sessions with
            * exactly the same source and destination parameters in the
            * state cache (and source and destination is the only stuff
            * that is saved in the fragment cache). Note further that
            * some TCP connections in the state cache are hashed with
            * sport and dport as well which makes it not worthwhile to
            * look for them.     
            * Thus, when ackskew is negative but still seems to belong
            * to this session, we bump up the destinations end value.
            */

The comment above explains why  boundary (III) cannot be used.      

           if (ackskew < 0)      
                   tdata->td_end = ack;

This is necessary to ’synchronize’ td_end when indeed fragments were passed and 
the total length is unknown

           /* update max window seen */
           if (fdata->td_maxwin < win)
                   fdata->td_maxwin = win;
           if (SEQ_GT(end, fdata->td_end))
                   fdata->td_end = end;
           if (SEQ_GE(ack + win, tdata->td_maxend)) {
                   tdata->td_maxend = ack + win;
                   if (win == 0) 
                           tdata->td_maxend++;
           }



This is the update of the relevant state variables with the information from the in-
spected packet.

           ret = 1;
   } else {
           ret = 0;
   }
   return(ret);

Figure 3: New state code implementation

The largest compromise that had to be made 
when implementing the new design was that 
boundary (III) cannot be checked. IP Filter does 
not fully reassemble fragmented packets before 
they are passed (this is supposed to be done by 
the final destination [RFC1812, section 5.2.1.1] 
anyway). It does use a limited fragment cache 
but it can not always give back the total length 
from packets of which it is known that all frag-
ments have been forwarded by IP Filter. This is 
noticed by the state engine code in that packets 
might arrive that acknowledge data that seems 
not to have been sent. In case this is detected 
and the acknowledgement is within MAXACK-
WINDOW from what was perceived as the last 
octet sent, it is assumed the ack value is valid 
and it acknowledges data that was sent.

6. Testing
Testing was first done on a system that did not 
route packets but that sniffed a network and col-
lected state information from all sniffed packets.  
IP Filter had to be modified slightly to do this. 
Whenever a packet was seen that would have 
been blocked by the state engine, it was logged 
on this machine.

Such a setup allows for testing the state engine 
without actually disrupting network traffic be-
cause no real filtering is performed. Thus it is 
possible to test on operational networks which 
saves the trouble of producing  test network 
traffic.

On the actual (operational) network on which 
the tests were done, an enormous amount and 
variety of connections could be tested as the 
network is used to monitor and administer ma-
chines using connectivity from high speed low 
latency links to low bandwidth high latency 
links.

7. Timeouts
In order not to fill up kernel memory with state 
entries it is necessary to add a timeout to each 

entry. When the timeout expires, the entry is 
removed. Of course the value of the timeout can 
be adjusted according to the (TCP) state the 
connection is in.

When testing the above stateful filtering design, 
it turned out that in a number of cases, packets 
would get blocked because the state entry did 
time out where it should not have. This was par-
ticularly true in the case of TCP half-closed 
connections as often seen with browsers. It 
would be easy to set a large timeout on every 
state entry but on the other hand,  state entries 
should be removed as quickly as possible to 
avoid unnecessary memory use. This section 
contains some thoughts on how to reimplement 
TCP state entry timeouts.

The state timeout code in IP Filter has a state 
machine for each half of a connection. This 
state machine more or less, uses the same states 
as the TCP stack does [RFC793, section 3.2].

Having two state machines is a nice idea be-
cause it gives the possibility to look at the status 
of each half of the connection in the state table. 
The timeouts however are not always set cor-
rectly. As an example: when one half of the 
connection is in the ESTABLISHED state while 
the other half has sent a FIN, the resulting tim-
eout should be the same as if the connection 
would have been fully established since one 
side of the connection might still be sending 
data.

Furthermore, when one side of a connection 
sends a FIN and the other side responds with a 
FIN/ACK, a constant timeout is used for the so-
called 2MSL period. Over time, this timeout has 
been increased to prevent blocking of retrans-
mits. This has the unwanted side effect that for 
those connections where the connection ended 
okay, the state entries linger around unnecessar-
ily long. Especially in HTTP intensive setups, 
this poses a heavy burden on used memory. As 
a solution to this problem, a variable timeout 
should be used. When both ends of a connection 
have sent a FIN, a relatively small timeout 



should be set. This timeout should be such that a 
possible  first retransmit of a FIN will be done 
within the timeout period. An exponential back-
off should then be used to increase the timeout 
value upon reception of retransmits of one of 
the FIN packets. Both [RFC1122, section 
4.2.3.1] and [RFC2581] specify how to imple-
ment retransmission. However given that there 
are quite a number of incorrect implementations 
of SYN retransmissions [RS2, section 14.7] and 
that SYN retransmissions should use the same 
algorithm as data segments, further study is 
probably necessary to determine optimal values 
for the initial value of the timeout as well as for 
the actual exponential backoff implementation.

8. Conclusions
The new state code has been in operation by 
quite a number of IP Filter users and seems to 
work as expected. The most remarkable block 
of a packet was seen in a HTTP session from 
the author’s home system running FreeBSD 
(host A) to a Windows NT system (host B). The 
blocking seemed to point to a bug in the filter-
ing code.  Closer examination revealed that this 
was not true.  The relevant packets of the ses-
sion are depicted below (in tcpdump [TCP] for-
mat with line numbers). The last packet was 
blocked by IP Filter.

 1 B.80 > A.1102: . 153993:155453
 2 B.80 > A.1102: . 155453:156913
 3 A.1102 > B.80: . ack 156913 win 8760
 4 B.80 > A.1102: . 156913:158373
 5 A.1102 > B.80: . ack 158373 win 8760
 6 B.80 > A.1102: . 161293:162753
 7 A.1102 > B.80: . ack 158373 win 8760
 8 B.80 > A.1102: . 162753:164213
 9 A.1102 > B.80: . ack 158373 win 8760
10 B.80 > A.1102: . 164213:165673
11 A.1102 > B.80: . ack 158373 win 8760
12 B.80 > A.1102: . 165673:167133
13 A.1102 > B.80: . ack 158373 win 8760
14 B.80 > A.1102: . 158373:159833
15 B.80 > A.1102: . 167133:168593

Looking carefully at these packets, we see that 
packet no 14 seems to be a retransmission of a 
packet that seems to be lost between packet no 4 
and 6. Looking carefully at packet 15, its se-
quence number and the advertised window of 
host A (packet 13), it turns out that host A was 
sending out of window data. It is unclear if this 
violates the TCP protocol specification 
[RFC793], but at least it seems like a waste of 
bandwidth. This situation does not seem to oc-
cur often, though it was at least reported by one 
other IP Filter user [CS]. In fact the old state 
code would have completely blocked the con-
nection when too much data was sent out of the 

advertised window and an earlier packet was 
lost.

Other blocked packets seen are mostly due to 
timeouts of state entries and are thus unrelated 
to the state code itself. Packets that appear lost 
and were already retransmitted but that are actu-
ally not lost  might sometimes also result in 
blocks.

Some minor issues were discovered in the 
implementation of the new code. The most no-
table one being an invalid initialization causing 
retransmits of SYN packets not to match the 
state entry.

9. Future work
In order to complete the state code, at least one 
additional feature should be added. Currently, 
for window advertisements, only the TCP win-
dow field is taken into account. For connections 
involving the TCP window scale option 
[RFC1323], the results are thus incorrect. The 
old IP Filter state engine had the same problem 
so the new state engine did not make things 
worse in this respect. Still, this omission needs 
to be corrected in a future version. When this is 
done, also the timestamp option is to be taken 
into account so that the state engine will be able 
to handle wrapped sequence numbers within 
high speed connections.

Of course, sessions that enter the state table, 
when they are already established, should be 
handled better. This was already discussed in 
Section 5.

Furthermore, the workarounds in the  imple-
mentation for dealing with fragments should be 
eliminated. This has to be done in the fragment 
handling. What is needed is that the state engine 
is called when it is known that all fragments of 
a fragmented packet are forwarded by the IP 
Filter host. In that case, the state engine must 
also be passed the total length of the packet.

Another useful addition would be to enhance IP 
Filter such that when a packet comes in that is 
not yet in the state table, it can verify that the 
packet actually belongs to an existing TCP con-
nection.

An idea to achieve this, as used by Checkpoint’s 
Firewall-1, is when a packet comes in with the 
ACK flag set but not the SYN flag, to dynami-
cally probe the receiver of the packet to deter-
mine if it is part of a valid connection. This can 
be done in the following way:



Suppose a packet comes in with the ACK flag 
set but not the SYN flag, that would be blocked. 
In case a rule exists that would have led to a 
state entry that would have allowed this packet 
to pass, the filter strips the payload from the 
packet, changes the seq field and forwards the 
packet. If  the packet did not belong to a valid 
session, the receiver will return an RST. When 
the filter sees the RST it will drop the RST (thus 
not giving out any information about the re-
ceiver). But if it did belong to a valid session, 
the receiver will reply with an ACK. This ACK 
then leads to a state entry after which the con-
nection can go on.

Last but not least, facilities should be added to 
the IP Filter TCP state code such that it can 
function in a redundant (high availability) setup.  
Passing all state changes from one IP Filter host 
to another one results in too much traffic so 
something smarter must be designed. Passing 
the static part of state entries (struct 
tcpstate ) on state additions and removals 
might be a valid option. Once the active IP Fil-
ter setup fails and an inactive one takes over it 
knows the port numbers and addresses of valid 
existing sessions. The method described in Sec-
tion 5 can then be used to determine on the fly 
suitable values for the struct tcpdata 
entries.

Availability
The new state code is available within the IP 
Filter distribution since version 3.3.0. The dis-
tribution can be obtained via the IP Filter 
Homepage [IPF].
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