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Abstract. Till now security aspects are neglected in most multicast
applications. We suggest a protocol stack that provides strong cryp-
tography, realtime streaming, and reliability based on Internet stan-
dards/drafts (OpenPGP, RTP) and our own developments (WTP, SMP).
We have integrated this stack into our collaborative whiteboard system
and tested it in teleseminars and conferences.

1 Introduction and Overview

Especially for multimedia streams multicasting is a very important
extension to the standard Internet protocols. Till now most appli-
cations neglect important features like secure communications, real-
time requirements and reliability.
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Fig. 1. dlb Stack [GeWe00]
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We present a protocol stack that provides

— strong cryptography
— realtime streaming
— reliability

based on Internet standards/drafts OpenPGP (RFC2440 [CDFT98])
and the Real-time Transport Protocol (RTP, RFC1889 [SCF J96] up-
dated by Draft [SCFJ97]) and our own developments (WTP, SMP).
We have integrated this stack into our collaborative whiteboard sys-
tem and tested it in teleseminars and conferences.

1.1 Whiteboard Transfer Protocol (WTP)

The Whiteboard Transfer Protocol (WTP) is the application proto-
col of the digital lecture board (dlb) [Geye99]. WTP defines packet
formats and the semantics for creating graphical objects or pages,
for telepointer data, etc. For a detailed decribtion see [Geye99].

1.2 OpenPGP (OPGP)

The security concept described later uses the OpenPGP (RF(C2440)
[CDFT98] Internet standard. OpenPGP is an compatible to the de
facto standard Pretty Good Privacy (PGP). The OPGP layer real-
izes the encryption and decryption of the transmitted data, i.e., RTP
packets are wrapped into OPGP packets.

In contrast to S/MIME, Open-PGP only provides support for
strong cryptography. There is also a possibility to integrate new al-
gorithms. We used this to integrate the two fast, free and secure
AES-candidates Rijndael and Twofish.

1.3 Real-time Transport Protocol (RTP)

WTP packets are the payload of RTP packets, a protocol that was
chosen for several reasons. As mentioned above, existing MBone
recording systems rely on RTP. Furthermore, the timestamps of RTP
allow the synchronization with other RTP-compatible data streams
(e.g., audio and video). And RTP provides light-weight session con-
trol through RTCP.



The Real Time Transport Protocol (RTP) is an application layer
transport protocol that has been especially designed to transport
data streams with realtime characteristics such as video and to ”loo-
sely” control sessions such as video conferences.

RTP has been developed by the Audio-Video-Transport-Group
(AVT), a special interest group of the Internet Engineering Task
Force (IETF). Its development has been triggered by the joint inter-
est of the group to provide an open interface for exchanging audio
and video data over datagram networks such as the Internet.

1.4 UDP and SMP

We use either unreliable UDP connections (e.g., for telepointer data)
or reliable SMP connections to transmit the OPGP packets.

The Scalable Multicast Protocol (SMP) is a reliable transport
service developed in the context of the dlb project [Grum97]. The
Scalable Multicast Protocol (SMP) is a new reliable multicast pro-
tocol which was developed at the university of Mannheim.

The main features of the SMP are

— high reliability
— good scalability
— different service classes

We have integrated this stack into our collaborative whiteboard sys-
tem and tested it successfully in teleseminars and conferences.

2 Related Work

Many existing video conferencing systems such as NetMeeting, Pro-
Share, CUSeeMe, or PictureTel provide audio, video, application
sharing, and standard whiteboard features but consider neither se-
curity issues nor the specific requirements of collaborative types of
work, such as reference pointing, raising hands, forming work groups,
controlling the course of instruction, etc.



2.1 MBone Tools

The MBone tools vic (video conferencing tool), vat (visual audio
tool), and wh (whiteboard) actually support security but only weak
DES encryption [MaBr94]. Due to export limitations, the DES en-
cryption cannot be used legally outside the US for a long period.

2.2 MERCI Project

For the platform—independent whiteboard TeleDraw [TeDr98|, which
is being developed in the context of the MERCI project, it is planned
to include MERCI security enhancements; the current version is still
insecure [MERCI98]. Since TeleDraw has been designed for video
conferencing, it also does not consider requirements of collaborative
work.

2.3 Secure Conferencing User Agent (SCUA)

Security within the MERCI project is basically realized by the Secure
Conferencing User Agent (SCUA), developed by GMD ([Hiea96],
[Baea97], [Hiea97]). SCUA is an email-based approach that allows
to initiate conferences securely using PEM (Privacy Enhanced Mail).
For the actual transmission of data, SCUA relies on the built—in weak
security mechanisms of the MBone tools. After key exchange, either
the tools have to be started with the session key as a parameter or
the key has to be introduced by hand.

3 Real time transport protocol

Applying MPEG compression techniques to an image sequence re-
sults in a bit stream containing the encoded video data. However, to
transmit a bit stream of arbitrary length over datagram networks it
has to be partitioned into data packets of appropriate size.

In the following we discuss a transport protocol for typical mul-
timedia communication scenarios and applications. Such scenarios
are for example audio and video conferencing sessions where several
participants are connected via a network which provides unreliable
multicast services. Each participant can send real time data and joins
and leaves the session dynamically.



The Real Time Transport Protocol (RTP) is an application layer
transport protocol which has been especially designed for transport-
ing data streams with real time characteristics such as video and to
“loosely” control sessions such as video conferences. RTP has been
developed by the Audio-Video-Transport-Group (AVT), a special
interest group of the Internet Engineering Task Force (IETF). Its
development has been triggered by the joint interest of the group to
provide an open interface for exchanging audio and video data over
datagram networks such as the Internet. In order to send real time
video over the Internet two services have to be provided:

1. As mentioned above the stream has to be divided in small packets
which fit in a datagram. This process is called framing [CT90].
RTP provides a standardized packet format which is divided into
a header part and a payload part. While the header part pro-
vides meta information such as timestamps, sequence numbers
and data type identifiers the payload contains the essential data.
RTP is open to transport any kind of media and therefore a
payload format definition is necessary for each type of media.
These payload format definitions are given in additional docu-
ments. Section 3.2 explains header and payload formats in more
detail.

2. RTP is typically run on top of unreliable protocols like UDP
to make use of multicasting services. In order to monitor the
quality of service of the underlying network and to give feed-
back about the participants of a (multicast) session RTP includes
a control protocol called Real Time Control Protocol (RTCP).
Consequently, a RTP session consists of two streams: The data
stream and the control stream. In case that UDP is used as un-
derlying transport protocol applications typically use even port
numbers for the data stream and the next higher odd number for

the control stream. Section 3.1 summarizes the services provided
by RTCP.

RTP is an open protocol which can be used in many applications
with different types of data, e.g. live Internet audio/video confer-
ences or Internet TV. The core protocol is defined in Internet draft



[SCFJ97] which revises RFC 1889[Sch96]!. This document describes
protocol specifications which are common in all applications. Addi-
tional specifications for a particular application are given in separate
documents, which define an application profile and one or several
payload format specifications. The profile specifies extensions and
modifications of RTP and defines payload type codes in order to
identify the payload format. For example a RTP datagram with the
payload type value 100 in the RTP header is mapped to MPEG-
1/MPEG-2 streams. A profile for audio and video can be found in
RFC 1890 [SCFJ96]. The payload format specification defines how
a particular payload (e.g. MPEG-1/MPEG-2) is to be carried in
RTP. There already exist several Internet drafts which define pay-
load format specifications for particular media streams. For example
a payload format for MPEG-1/MPEG-2 can be found in [HFGC97].

3.1 RTP control protocol

RTCP defines control packets which are periodically transmitted
from each participant to the other participants of the session and
performs two mayor tasks:

1. It provides feedback on the quality of service of the underlying
network. These informations can be used to allow flow and con-
gestion control functions. E.g. a participant in a video conference
can reduce his frame rate if the other participants report high
packet loss rates.

2. It allows the transmission of minimal session control information,
e.g. the name and the email address of a participant.

3.2 RTP data transport

It is beyond the scope of this paper to discuss all profiles and payload
formats in detail. Instead we first describe the RTP-header common

to all payloads followed by an overview of the MPEG-1/MPEG-2
payload format as an example for other payload types.

! Note that among other changes the draft specify protocol extensions for layered
media streams.



The RTP datagram header contains information common to all
payload formats. In Table 1 the format of such a RTP datagram
header is described.

1 2 3
01234567 8 90123456789 012345¢678901

flags [M] PT | sequence number

timestamp

synchronization source (SSRC) identifier

contribution source(CSRC) identifier

Table 1. Fixed RTP Header Fields

The first eight bits of the RTP header are used as flags and con-
tain various informations like the version number and padding bits.
The marker bit M is interpreted differently in different payload types
and is followed by the payload type identifier PT. The sequence
number is used to identify packet loss and to restore the original
packet order. The timestamp reflects the sampling instant of the
data transported within the RTP packet according to the Network
Time Protocol. The next header field SSRC is intended to used
as a unique identifier for a participant of a session which is chosen
randomly by each participant. For the rare case that two partici-
pants choose the same SSRC the protocol describes algorithms to
detect and handle such a collision. The contribution source identi-
fiers CSRC are used in order to identify all contributors if data of
several participants has been mixed together in the payload. For ex-
ample in an audio conference one of the participants connects via
a low bandwidth connection. In order to reduce the network load a
gateway application can be used which “mixes” the data of several
other participants in a single packet.

MPEG-1/ MPEG-2 payload format specification Because of-
ten unreliable transport protocols are used packet losses may occur
frequently. Furthermore participants may dynamically join and leave
a session. Internet draft [HFGC97] describes payload formats for
MPEG-1 and MPEG-2 video streams which are defined with the



intention to handle these situations gracefully. For example MPEG
pictures can become quite large (in the case of I-frames) and a single
picture is usually spread over several packets. Hence the payload de-
fines fragmentation rules which guarantee that the MPEG stream is
split at crucial points, e.g. at the beginning of a new picture. Further-
more the payload defines a header which contains important meta
information about the stream, e.g. the frame number (within the
current GOP) and several flags which are set if the packet contains
the start of a new picture, a new slice or if MPEG parameters (e.g.
frame size) are provided. That way new participants can easily de-
tect packets in the stream which contain important meta information
necessary for decoding the pictures by parsing the RTP header.

Table 2 summarizes the MPEG specific RTP header in the pay-
load in order to provide a more practical sense for the abstract de-
scription in the previous paragraph.

1 2 3
01234567890123456 789 01234356738 0
MBZ T TR A|N|S|B|E P F| BFC |F| FFC
N B F
\Y% \Y%

Table 2. MPEG specific RTP Header Fields.

The first 4 bits MBZ are currently unused. They are reserved
for future specifications. The T bit specifies the MPEG type. It is
set if the RTP packet contains MPEG-2 data and erased if MPEG-
1 is transmitted. The next ten bits define the temporal reference
TR of the current picture relative to the current GOP, followed
by several flags: The Active N flag AN is only valid for MPEG-2.
Together with the new picture header flag N it signals changes of
the MPEG-2 picture format. The S bit is set if the packet contains
a new sequence header followed by the B bit and the E which signal
the beginning or respectively the end of a slice. These bits are useful
for the decoder if a packet loss occurred. In that case the decoder can
easily skip packets until a necessary header is reached. The remaining




bits signal information about the picture type and coding, e.g. if it
is an I, B or P frame.

4 OpenPGP

In this section we discuss some aspects of OpenPGP focused on
shared secrets scenarios and the dlb seclib implementation.

The program ” Pretty Good Privacy” became a ” de-facto-standard”
for secure E-mail. However some minor weaknesses in the most pop-
ular PGP 2.6x version have been found. In version PGP 5.0 some
fixes have been implemented:

— New algorithm for the KeyID
— New algorithm for the fingerprints
— Hashfunction: SHA-1 instead of MD5

OpenPGP uses the following core technologies

— Symmetric encryption

Asymmetric encryption and signatures
— Hash functions

— Compression

Radix-64 Conversion

This section provides a brief overview focused on shared secret
scenarios. The description closely follows [CDFT98].

5 Supported Algorithms in OpenPGP

OpenPGP supports a wide selection of cryptographic basic algo-
rithms.

5.1 Asymmetric Algorithms

In addition to the factorisation—based RSA algorithm OpenPGP of-
fers encryption and signature algorithms based on the Discrete Log-
arithm Problem (DLP).



ID ‘ Algorithm

1 RSA (Encrypt or Sign)

2 RSA Encrypt-Only

3 RSA Sign-Only

16 ElGamal (Encrypt-Only)

17 DSA (Digital Signature Standard)

18 Elliptic Curve (reserved for)

19 ECDSA (reserved for)

20 ElGamal (Encrypt or Sign)

21 Diffie-Hellman (X9.42)

100 to 110

Private/Experimental algorithm

5.2 Hash Functions

Since several weaknesses were found in the MD5 hash function, some
new hash functions are offered.

‘ ID ‘Algorithm H Text Name

1 MD5 "MD5”

2 SHA-1 "SHA1”

3 RIPE-MD/160 "RIPEMD160”

4 Double-width SHA (experimental)

D MD2 "MD?2”

6 TIGER /192 "TIGER192”

7 |HAVAL (5 pass, 160-bit) "HAVAL-5-160"
100 to 110 | Private/Experimental algorithm

5.3 Symmetrical Algorithms

Since for commercial applications IDEA is not avaible free of charge
new symmetric algorithms can be chosen. Note that there is no weak
cryptography or proprietarian ciphers as in S/MIME.



ID ‘Algorithm ‘
Plaintext or unencrypted data

IDEA

Triple-DES (DES-EDE, 3 Keys)
CASTS5 (128 bit key, as per RFC2144)
Blowfish (128 bit key, 16 rounds)
SAFER-SK128 (13 rounds)

DES/SK (reserved for)

Reserved for AES with 128-bit key
Reserved for AES with 192-bit key
Reserved for AES with 256-bit key

10 Twofish with 256-bit key

1100 to 110 | Private/Experimental algorithm. |
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6 The OpenPGP Message Format

A short description of the OpenPGP Messages Formats used in the
dlb security library follows.

6.1 Packet Headers

The packet header consists of one byte that identifies the type of the
packet as well as its length.

|Bit][7]6]5]4[3]2]1]0]

Bit 7 is always set to 1. Bit 6 indicates whether the new (Open-
PGP and PGP5) or the old (PGP2.x) packet format is used.

If the packet uses the older format, bits 5 to 2 indicate the content
tag, and bits 1 and 0 define which length type is used. Length types
for the old packet format are:

‘ Length bits ‘ Length type H Description ‘

00y 0 The packet has a one-byte length.
01, 1 The packet has a two-byte length.
10, 2 The packet has a four-byte length.
11, 3 The packet is of indeterminate length?.

2 The packet length is the spacw remaining of the current packet/file. This packet
length shouldn’t be used when creating new packets.



If the new packet format is used, the length type is encoded in the
next byte (denoted as xi, the following bytes are named x5, x3, . . .):

| Condition | Description |

(1) 0<x; <191 || The length is encoded using one byte.
(2) 192 < x; <223 || The length is encoded using two bytes.
(2) 224 < x1 < 254 || The length is encoded using one byte.
(4) xp = 255 The length is encoded using five bytes.

1. The length is z. Possible values are between 0 and 191 bytes.
2. The length is

(31 — 192) % 256 + x5 + 192.

Possible values are between 192 and 8,383.
3. The length is

(((((zg * 256) + x3) * 256) + 24) * 256) + 5.

Possible values are between 0 and 4,294,967,295.

4. The length is 2 ™ AND 15, This is a partial length, i.e., the next
byte describes another length that is added to this length. It is
used if the previous length types are not sufficient to define the
length. The last length type in a chain of partial length types has
to be one of the three previous types, even if it is 0.

6.2 Packet Tags

When the old packet format is used, only tags 0 to 15 are available.
When the new packet format is used, tags 0 to 63 are available. The
currently defined types are:



‘ Type ‘ Description ‘

Reserved - a packet tag must not have this value
Public-Key Encrypted Session Key Packet
Signature Packet
Symmetric-Key Encrypted Session Key Packet
One-Pass Signature Packet
Secret Key Packet
Public Key Packet
Secret Subkey Packet
Compressed Data Packet
Symmetrically Encrypted Data Packet
Marker Packet
Literal Data Packet
Trust Packet
13 | User ID Packet
14 | Public Subkey Packet
60-63 | Private or Experimental Values

—| =
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7 Symmetrical Encryption

OpenPGP offers extended support for symmetrical encryption. Note
that the new Symmetric-Key Encrypted Session Key packet type (s.
7.3) is not used by PGP 2.x or PGP 5.0.

7.1 OpenPGP-CFB mode

The OpenPGP-CFB mode is a cryptographically secure variation
of the standard Ciphertext Feedback (CFB) mode. An additional
feature is a light-weight check if the encryption was succesfull. (Note
that this check has a ”fuzziness” of 2'¢.)

Description

Let B the block size in bytes, B = 8 for Blowfish, etc., and B = 16 for
AES candidates OpenPGP CFB mode uses an initialization vector
(IV) of all zeros, and prefixes the plaintext with B bytes of random
data



{Ry,...,Rpy2},

such that bytes

Rpi1 = Rp_1 and Rp;s := Rp

The OPGP CFB Mode "resyncs” after encrypting those B+ 2 bytes.

1.
2.

10.

The feedback register (FR) is set to the IV, which is all zeros.
FR is encrypted to produce FRE (FR Encrypted). This is the
encryption of an all-zero value.

. FRE is xored with the first B bytes of random data prefixed to

the plaintext to produce
{C1,...,C3g},

the first B bytes of ciphertext.

. FR is loaded with

(C1,....C8).

. FR is encrypted to produce FRE, the encryption of the first B

bytes of ciphertext.

. The left two bytes of FRE get xored with the next two bytes of

data that were prefixed to the plaintext. This produces

{Cp+1,Cn42},

the next two bytes of ciphertext.

. The resync step FR is loaded with

{CS; Ty CB+2}‘

. FR is encrypted to produce FRE.
. FRE is xored with the first B bytes of the given plaintext, now

that we have finished encrypting the B+ 2 bytes of prefixed data.
This produces

{OB+3; HR CB+3+B};

the next B bytes of ciphertext.
FR is loaded with

{OB+3; R CB+3+B}'



11. FR is encrypted to produce FRE.

12. Now the standard CFB mode starts. FRE is xored with the next
B bytes of plaintext to produce the next B bytes of ciphertext.
These are loaded into FR, and the process is repeated until the
plaintext is used up.

o o o
v— | E E {—:E
|
1

)]
I Vi Vi VAl

Cl Cn

Fig. 2. Standard Ciphertext Feedback Mode (CFB)

7.2 S2K algorithms

In this subsection we discuss the two main String-To-Key algo-
rithms. These algorithms are used to convert the user’s passphrase
to a symmetrical encryption key.

Simple S2K. The Simple S2K algorithm directly hashes the string
to produce key data:

KeyData := HASH(Passphrase)

The manner in which this is done depends on the size of the session
key (which will depend on the cipher used) and the size of the hash
algorithm’s output. If the hash size is greater than or equal to the
session key size, the high-order (leftmost) bytes of the hash are used
as the key.



Multiple Instances. If the hash size is less than the key size, mul-
tiple instances of the hash context are created — enough to produce
the required key data. These instances are preloaded with 0,1,2,...
bytes of zeros (that is to say, the first instance is not preloaded, the
second is preloaded with 1 byte of zeroes, the third is preloaded with
two bytes of zeroes, and so forth).

As the data is hashed, it is given independently to each hash
context. Since the contexts have been initialized differently, they
will produce different hash outputs. Once the passphrase has been
hashed, the output data from the multiple hashes will be concate-
nated, first hash leftmost, to produce the key data, and any excess
bytes on the right will be discarded.

Salted S2K. The Salted S2K includes a 64—bit random number
(”Salt”) in the S2K specifier that gets hashed along with the pass-
phrase string, to help prevent dictionary attacks:

KeyData := HASH(Salt||Passphrase)

Passphrase

kkkkkkkkkkkkkkk

Randomsalt a@@

Sessionkey O~
Packetk
4

Fig. 3. Passphrase Only.



7.3 Symmetric-Key Encrypted Session Key Packets
(Tag 3)

A Symmetric-Key Encrypted Session Key packet holds the symmet-
ric key encryption of a session key used to encrypt a message. Zero or
more Symmetric-Key Encrypted Session Key packets may precede a
Symmetrically Encrypted Data Packet that holds an encrypted mes-
sage. The message is encrypted with a session key. The session key
is itself encrypted and stored in the Encrypted Session Key packet
or the Symmetric-Key Encrypted Session Key packet.

The body of a Symmetric-Key Encrypted Session-Key packet
consists of:

— A one-byte version number (Currently version is 4).
— A one-byte number for the symmetric algorithm used.
— A one-byte number string-to-key (S2K) specifier.
Optionally, the encrypted session key.

If no encrypted session key is present (which can be detected on
the basis of the packet length and the S2K specifier size), then the
S2K algorithm applied to the passphrase produces the session key
directly. If the encrypted session key is present, the result of applying
the S2K algorithm to the passphrase is used to decrypt the encrypted
session key field, using the CFB mode with an IV of all zeros.

The decryption result consists of a one-byte algorithm identifier
that specifies the symmetric-key encryption algorithm and the ses-
sion key used to encrypt the following Symmetrically Encrypted Data
Packet. Because an all-zero IV is used, the S2K specifier must use a
salt value.

7.4 Symmetrically Encrypted Data Packet (Tag 9)

The Symmetrically Encrypted Data packet contains data encrypted
with a symmetric-key algorithm. When it has been decrypted, it
will typically contain other packets (i.e. literal data packets or com-
pressed data packets).

The body of this packet consists of:

— Encrypted data, the output of the selected symmetric-key cipher
operating in PGP’s variant of CFB mode.



The symmetric cipher used can be specified in an Public-Key
or Symmetric-Key Encrypted Session Key packet that precedes the
Symmetrically Encrypted Data Packet. In that case, the cipher al-
gorithm byte is prefixed to the session key before it is encrypted. If
none of these packet types precedes the encrypted data, the IDEA
algorithm is used with the session key calculated as the MD5 hash
of the passphrase.

7.5 Literal Data Packet (Tag 11)

A Literal Data packet contains the body of a message; this data is
not to be interpreted further.

The body of this packet consists of:
— A one-byte field that describes how the data is formatted.

If it is a ’b’ (0x62), then the literal packet contains binary data. If
it is a 't’ (0x74), then it contains text data, and might need line ends
converted to local form, or other text-mode changes. RFC 1991 also
defined a value of ’I” as a ’local’ mode for machine-local conversions.
This use is now deprecated.

— File name as a string (one-byte length, followed by file name), if
the encrypted data should be saved as a file.

If the special filename _CONSOLE is used, the message is consid-
ered to be "for your eyes only”. This advises that the message data is
unusually sensitive, and that the receiving program should process it
more carefully, normally avoiding storing the received data to disk.

— A four-byte number that indicates the modification date of the
file, or the creation time of the packet, or a zero that indicates
the present time.

— The remainder of the packet is literal data.

Text data is stored with <CR><LF> text endings (i.e. network-
normal line endings). These should be converted to local line endings
by the receiving software.



8 Scalable Multicast Protocol (SMP)

In contrast to the transmission of audio and video streams, inter-
active, cooperative applications like whiteboards or group editors
require reliable data transmission. IP multicast is an unreliable, best-
effort service, i.e. data packets can get lost, doubled, or disordered.
Since the traditional field of application in the MBone is audio and
video broadcasting, there are only few reliable multicast protocols
available by now. In addition the complexity of providing multicast
reliability in an efficient way hindered the emergence of a multicast
transport protocol standard like TCP in the case of unicast. There-
fore, reliable multicast protocols are actively researched at present
(see [Hof98],[Fl095],[Lev96al,[Bor94]).

Since reliable multicast protocols were not ubiquitous in 1997,
we have decided to develop our own protocol called smp (scalable
multicast protocol). The background was simply the pragmatic re-
quirement of having a reliable multicast protocol for our whiteboard
project dlb (digital lecture board) [Gey98a].

When starting this work we had the following requirements to smp:

— guaranteed reliability

— good scalability

— separation between application level and transport level
— different service classes

— easy handling and light-weight implementation

8.1 Classes of Reliable Multicast Protocols

Depending whether error detection is done at the sender or at the re-
ceiver, we distinguish between sender-initiated and receiver-initiated
multicast protocols.

In sender-initiated protocols the receivers of data typically send
acknowledgements (ack) for each received data packet to the sender.
After a certain period of time without having received an ack (time-
out) the sender retransmits the data packet. The overhead for the
administration of acknowledgements and timers can become rather
high in large groups such that an efficient error recovery cannot be
ensured due to end system overload. The flooding of senders with



acknowledgements is known as sender implosion [Dan94] or, more
specifically, as ack implosion.

In receiver-initiated protocols the single receivers of a commu-
nication group are responsible for the error detection. By means of
sequence numbers the receiver detects packet loss. The retransmis-
sion of lost packets is requested explicitly by the receiver by sending
so called negative acknowledgements (nack) to the sender. This ap-
proach unburdens the sender from the administration of timers and
acks and, since acks are not needed anymore, the required bandwidth
is lower in contrast to sender-initiated approaches. But if many re-
ceivers - especially in large groups - detect the loss of the same packet,
the sender is flooded with nacks (nack implosion). This means a high
load at sender’s end system and a high amount of unnecessary re-
transmissions. In 1987 Ramakrishnan et al. [Ram87] have proposed a
timer-based scheme to suppress negative acknowledgements in such a
case (nack avoidance). An improved version of this scheme has been
integrated into the MBone whiteboard wb [F1095] and is known as
SRM (scalable reliable multicast).

Latest approaches avoid the implosion problem by using a hier-
archical structure of receivers. Acknowledgements are not send to
the sender directly but to the father in a tree structure or to a rep-
resentative of a local group. Examples for tree-based protocols are
Lorax[Lev96a] or Reliable Multicast Transport Protocol (RMTP)
[Lin96].

8.2 Selecting a Protocol Class

Analysis of existing protocol classes [Gru97] indicate that sender-
initiated as well as simple receiver-initiated protocols without nack-
avoidance do not satisfy our requirements for smp. The scalability
is limited and, moreover, these protocols consume a high amount
of bandwidth. Tree-based protocols have perfect scaling properties
but the overhead for the administration of the tree structure is
very high especially in dynamic groups (permanent reconstruction).
On average, receiver-based protocols possess the most advantageous
properties regarding scalability, network load, and end-to-end delay
[Gru97]. However, the lack of explicit acknowledgments raises the
problem of releasing buffers because the sender will never be sure



whether or not all receivers have received a certain data packet.
So pure receiver-initiated protocols can only be implemented in the
application itself following the so called ALF paradigm (applica-
tion level framing). The Mbone whiteboard wb uses this principle
to realize reliability based on the SRM protocol [Flo95]. SRM itself
can be considered more a frame work than an autonomous protocol.
While being very efficient this approach also entails some disadvan-
tages: integrating SRM directly into the application (following ALF)
tremendously increases the complexity of application development.
The name space of application data and the SRM data need to over-
lap. Moreover, each application has to tailor or implement its own
reliable multicast protocol.

Due to the good performance of receiver-initiated protocols with
nack-avoidance we decided to take SRM also as a basis for the de-
velopment of SMP. To satisfy the requirement of separation between
application level and transport level, SMP was designed as an au-
tonomous protocol with its own name and address space. Buffers are
released by means of the periodic session messages already known
from SRM. SMP uses these messages to acknowledge data. In ad-
dition to SRM, SMP offers different levels of scalability, a late join
option, source ordering, a simple rate-based flow control and an any-
cast mechanism.

8.3 Architecture

SMP has been implemented as an autonomous server process that
runs on each participant’s machine. Applications access this service
by means of a client stub (basically a linked library) integrated into
the application (see Figure 4). The SMP library realizes the inter-
process communication between SMP process and application and it
offers a simple socket-like interface. After having established a con-
nection to SMP, the application can open multiple connections (SMP
sockets) to different multicast groups. Outgoing data are passed to
SMP via interprocess communication. SMP copies and stores these
data packets and sends it via IP multicast to the group. The re-
ceiving SMP processes also store the data packets and pass them to
their local application. Data loss is handles according to the SRM
repair scheme. Each SMP process stores the data of each sender as



long as it has received an acknowledgement of all group members via
a session message. The replication of data packets sent is required
since in SRM each participant may retransmit lost data packets and
not only the original sender.

application

SMP.
library

SMP
process

application

SMP
library

application

SMP.
library

SMP
process

UDP/IP multicast

€= connection 1
connection 2

=

Fig. 4. dlb Stack [Geye99]

8.4 Service Classes

By providing different service classes, SMP can be tailored to ap-
plication requirements to a certain extent. When establishing a new
connection, SMP offers the configuration options depicted in Ta-
ble 1 The user may opt between different levels of scalability, late
join, source ordering, and the maximum rate control limit. Scalabil-
ity class A supports small groups where scalability is a minor issue
and, thus, end-to-end delay can be minimized. While class B offers
a good trade-off between scalability and end-to-end delay, class C is
thought for large groups requiring a high scalability of the underly-
ing protocol. However, transmission delay suffers from the scalability
requirement in this class.

The late join option enables an application to receive all the
data from the beginning of a session on. This allows late comers
to be initialized with the current application state by replaying all
earlier events of the session. The late join option is only efficient for
applications with a very small amount of data transmitted because
the late join mechanism injects a rather high data volume each time
a new participant joins an ongoing session. Note that all the data



Scalability small groups

medium groups

large groups

no late join

new members get all the data from the beginning on

Late Join

Source Ordering no source ordering
data are delivered in the sender’s original order

sender’s constant data rate

=] = o= oW

Bandwidth

Table 1: SMP service classes

from the beginning on is retransmitted. Second, all distributed SMP
instances need to store all the data from the beginning of a session
on in order to be able to serve as a late join data provider.

The source ordering option provides packet ordering of a sin-
gle sender’s data packets at the receivers. Of course, opting packet
ordering introduces an additional delay since gaps in the sequence
numbers need to be filled, i.e. repaired by packet retransmission,
prior to delivering the data to the application.

SMP also supports a simple rate-based flow control. The specified
value defines the continuous data rate at which SMP sends data
to the multicast group. Hence, outgoing SMP traffic will never be
bursty.

8.5 Application Programming Interface (API)

The SMP service is provided via the application interface of the SMP
library (client stub). Access to SMP is implemented by instantiating
a SMP object and by calling the corresponding object methods listed
in Table 2. Most of the methods are self-explanatory. However, it is
interesting to mention that the methods SendDelayedDataRequest
and SendDelayedDataResponse provide an anycast mechanism. Any-
cast allows to select a single participant within a communication
group. This basically provides an application-level solution to the
sender implosion problem.

9 An Alternative Protocol Stack

In our protocol stack, whole RTP packets are encrypted within Open-
PGP packets. This means that neither the RTP header as nor the



Method Description

Open open a connection to the local SMP process
JoinGroup join a multicast group/session

LeaveGroup leave a multicast group/session

Close shut down connection to local SMP process
Send send regular data packets

SendDelayedDataRequest | send delayed data (anycast)
SendDelayedDataResponse |reply to delayed data request (anycast)
Servicelnd indicate a service event to the application
ServiceAvailable check whether a running SMP process is available

Table 2: SMP’s application programming interface

payload of the RTP packet is accessible for nodes within the net-
work. Only those nodes that have the valid key can read the header
informations. In some situations this might cause problems.

Consider a situation where an RTP media stream must be pro-
cessed/filtered in some way by a media gateway [Kuhm99]. In this
case it might be useful if at least the header informations of the RTP
packet were accessible to the media gateway. On the other hand the
headers contain some informations that should not be readable for
outsiders. This holds true especially for some fields in the RTCP
packets (e.g., the CNAME, email addresses, etc.).

WTP
OPGP
RTP

SMP

UDP

Fig. 5. Alternative dlb Stack [Weis00]



Separate Encryption of Header and Payload

We thus propose that the RTP payload and the RTP header should
be encrypted with two different keys. Media gateways should receive
the key that allows them to access the RTP header in order to filter
the media stream. The payload itself should not be decryptable by
the media gateways. Note that in this scenario outsiders are not able
to access the header informations.

10 Outlook

Till now we have focused on symmetrical cryptography. Integration
of public key techniques especially a direct using of GNU Privacy
Guard (GPG) key seems to be a very promising project. Additionally
we are working on JAVA card integration to provide highly secure
conferences.
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