
Deploying (and Developing)
Free Software

for Network Administration

Alexios Zavras
zvr@aueb.gr

Network Operations Center
Athens University of Economics and Business

Patission 76, GR-104 34 Athens, Greece

1. Introduction

The Network Operation Center of the Athens University of Economics and
Business (AUEB) is responsible for the system and network management of the
main servers and the moderately-sized but rather complex network of the Uni-
versity. This paper presents some general thoughts on the state of network
administration tools, based on our experience. It also describes two systems that
we developed in our facility, in order to help us manage two specific areas of our
responsibility.

2. Network Management Tools

The environment for system and network administration today is composed
by heterogeneous computing systems supporting multi-vendor applications
upon a variety of underlying transmission facilities and switching systems. Now-
adays, network administration problems and tasks often exceed, in resources
needed to resolve them, the problems that occur in single systems. Therefore,
there is need for tools that facilitate the solutions of such problems.

In order to manage such a complex environment, one needs tools that are
simple yet powerful, user-friendly yet easily customizable, and as complete as
possible yet easily interconnecting with others. Although the above specifications
might look like a quest for something unobtainable, a combination of currently
readily available tools and development of custom software based on freely avail-
able libraries can extend a long way towards this goal.

2.1 Commercial and freely available

An easy, yet important, way to categorize the available tools is according to
their mode of distribution. The major differentiation occurs between commercial
offerings and freely available tools, although the specific licensing terms in both
cases can be greatly confusing.

As a general rule, commercially available tools tend to be large systems that
handle many faces of the difficult tasks a network administrator should perform.
The freely available packages, on the other hand, usually have a limited scope
and they focus in a very small number of corresponding tasks.

Due to the immense complexity of the problem, it is easily understandable
why a system oriented towards the near totality of problems would be large.
Additionally, since its development requires considerable resources, the com-
mercialization of the software could be thought of as the natural way to recover
the costs and make a profit.

In the case of freely available tools, there seems to be a disproportionally
small amount of network management tools. Traditionally, freely available tools
were geared more towards programming, with a small minority of products
developed for system administration. Network administration tools were inexis-
tant for a long time, even after the rapid growth of network connected systems
and the explosion of the web. The first significant number of such tools first
appeared in the area of security checking, usually being extensions of tools run-
ning on a single system.

2.2 Applications and libraries

Another way of differentiating the available software products is by their
design goals. Broadly speaking, network management tools can be either appli-
cations that perform one or more functions, or libraries that can serve as an ifra-
structure for the development of applications.

A clear example is the mtr application, which is an enhanced version of the
standard traceroute utility. On the other hand, Tnm which is part of the Scotty
distribution, is a library that allows programs written in Tcl to access network
management information sources using a variety of protocols like SNMP, ICMP,
and DNS.

Of course, there are also some applications where this differentiation is not
that clearly defined. As an example, mrtg is a complete application, but depend-
ing on the configuration, which is extremely flexible, can be made to perform
very different tasks.

2.3 A third alternative

One of the inherent drawbacks in the field of network management tools is
the enormous diversity of functional network environments. Without exaggera-
tion, the specific components of each and every one of them, concerning systems
and services offered, are different. While such differences might not be impor-
tant for some system administration tasks, they are crucial for correctly design-
ing, developing and deploying network administration tools. The consequence is
that the tools that might be appropriate for one environment might be less than
useful in another.

Faced with these findings, one should consider carefully the alternatives. On
one side there are massive commercial offerings that require a lot of resources.
On the other side, there are freely available tools which might not be suitable for
the specific environment.

Finally, not to be lightly discarded, there is a third alternative, namely of pro-
ducing custom tools based on already available libraries. In our experience, for a
specific set of problems, this alternative worked out for the best.

The next two sections will describe two of our custom-made tools that were
built to address specific needs.

In our environment, a large part of software development is performed in
Tcl, so it was natural to build network tools based on Tcl and Tnm. Although Tcl
and Tnm are freely available, they were by no means the only such software
packages that were used for the development of the tools. In their current form,
the tools make heavy use of a variety of libraries for infrastructure, like database
management, or for convenience, like HTML generating code.

Of course, we should also not disregard the daily use of freely available oper-
ating systems, such as Linux, and software development tools, such as the FSF
tools like make.

3. The Cordial System

The first example of a custom-made system that was developed for helping
in the tasks of system and network administration that will be presented is the
Cordial system for managing dial-up access.

The principal components of the system include a server for communicating
with the access server, a database for storing user profile information, a database
for storing connection logging information, and a reporting module based on
web technology.

For all components, the existence of various freely available implementation
proved crucial in the development of the integrated system.

3.1 Functional requirements

The purpose of creating the Cordial system was to have a robust, yet simple
system for allowing all the members of our academic community (faculty, stu-
dents and administrative staff).

One of the characteristics of our environment, which proved to be an advan-
tage in the final implementation of the system, was the relatively small size of the
user community. Therefore, a number of design decisions were made that would
be not practical if the system were to be used, for example, in the operations of a
nation-wide ISP.

Another requirement was that the system be very flexible in accommodating
different categories of users. For example, members of the faculty should be able
to have a different set of privileges than the one available for undergraduate stu-
dents. After the initial design phase, it was decided that the only way to achieve
this functionality was to allow for the inclusion and interpretation of almost arbi-
trary rule-based policies.

3.2 General overview

The block diagram of the different components of Cordial system is pre-
sented in Figure 1.

The incoming calls come through a number of ISDN Primary Rate Interfaces
(PRIs) to an access server, which in our case is a Cisco 5300. The use of PRI lines
allows for the accommodation of both traditional modems over analog lines and
digital ISDN connections.

As soon as the modem connection is made, the authentication process asks
for a username and a password. These are checked by comparing them to a cen-
tral database, and if they are valid, the user can use the service.

After the user having authenticated himself, a separate process determines
whether the authorization to connect should be granted. While the first step of
authentication results in uniquely identifying the user, this second step takes
into account information about the current state of the system as well as histori-
cal information of the user’s past connections and reaches a decision.

Once the user is authorized to connect, all the relevant data are recorded for
accounting purposes. This accounting log, which is also updated when the user
disconnects, not only includes the mere fact of the user connection, but keeps

also record of the amount the connection lasted, as well as the number of bytes
and packets that were transferred from and to the user.

Figure 1: Cordial block diagram

password
check

rules
check

WWW
server

Modem

Access Server

Remote User

tacacs
server

accounting
module

reporting
module

us
er

na
m

e

pa
ss

w
or

d
pa

ss
w
or

d

O
K

or
 F

AI
L

us
er

na
m

e

au
th

or
iz

at
io

n
PA

S
S
 o

r
FA

IL

(read) (r
ea

d)

(read)

co
n
n
ec

ti
on

in
fo

(r
ea

d)

(w
rite)

user DB
connections

DB

For the above triple functions of authentication, authorization, and account-
ing (AAA), the access server needs to communicate with different processes via a
well-defined protocol. The two most widely used families of such protocols are
TACACS and RADIUS. While the RADIUS solution is the official standard one, and
the only one that is guaranteed to work on cross-platform environments, our
setup could easily use the TACACS+ protocol, which was developed by Cisco. The
source code for a TACACS+ server is freely available on the web, and its simplicity
was a major advantage. In retrospect, this simplicity also proved limiting in some
aspects where major changes were considered. However, the code is easily
understood, and minor changes and enhancements can be easily added.

3.3 Authentication

The authentication module is responsible for checking that the caller is a
legitimate user. The system had to be used by all the members of the academic
community, even though a central repository of user information did not exist.
The closest substitute that could be put to use were a number of Unix servers,
that acted as mail servers and therefore had account information for large groups
of users. For example, one such host handled all mail for undergraduate stu-
dents. Needless to say, these servers were in different network, and, more impor-
tantly, different administrative domains.

Therefore it was decided that the account information should be obtained
from these servers. Since all that was needed were usernames and passwords,
the information on the Unix hosts were stored in the files /etc/passwd and
/etc/shadow. Due to requirements for user categorization, the information on
the groups each user belonged, were also needed at a later stage. This was han-
dled in a similar manner, based on the /etc/group files on the Unix hosts.

A first prototype had the authentication process query the remote Unix host
for verification of the password that the user had entered. This required a simple
client-server protocol through a secure communication channel. However, due
to the instability of some of the hosts and network connections, it was decided
that the account information would be duplicated on the authenticating host,
thus avoiding all network traffic for this process.

The duplication of the information is performed by a periodic transfer of the
relevant files from the remote Unix hosts to the authenticating host. The infor-
mation is then entered into a local database system.

Our institution is, slowly but steadily, moving towards deployment of an
LDAP infrastructure, where all information concerning users will be readily
available by means of a standard interface. The Cordial system has already all the
hooks to query an LDAP server and obtain the user information that way.

3.4 Authorization

Once the user has been authenticated by means of a supplied password, the
process of authorization is initiated. Since all that is permitted to the users is to
initiate PPP connections, this step might at first be thought of as unnecessary.
However, it is at this point that different policies about the use of the system can
be enforced.

The authorization subsystem gets the authenticated username and consults a
series of policies that apply to the specific user. Since most policies are group
based, the first task of the subsystem is to associate the user with one or more
groups. It then processes the rules which define the appropriate policies, and
results in the correct outcome.

Since it was felt that the set of enforceable policies could not be accurately
predefined, it was decided that the policies should be written as scripts in the
scripting language Tcl, and allow their interpretation during run-time. The first
step was to carefully define a small set of library functions that allow the policy
scripts to gather information concerning the user and the environment. Based on
this set, the policy scripts can be arbitrarily complex, although in practice they
rarely exceed twenty lines of code.

As an example, a fictional policy for a faculty group can be seen in Figure 2.
This policy disregards the username during the process of deciding whether the
request should be authorized, and only uses it in order to calculate the amount of
time the user has already used the system. This calculation is performed by a
couple of library functions and is based on historical accounting data that were
kept during the earlier uses of the system by the same user. The presented fic-
tional policy imposes limits of one hour for daily use and of fifteen hours for
monthly use.

fictional rule for faculty group:
allow logins, max 1 hour per day, 15 hours per month
proc faculty {username} {
 set already [day_usage $username]
 if {$already > [expr 1*60*60]} {
 puts "101 Over daily limit"
 exit
 }
 set already [month_usage $username]
 if {$already > [expr 15*60*60]} {
 puts "102 Over monthly limit"
 exit
 }
 puts "0"
}

Figure 2: Example policy

It should be noted that in real life, the policies are a little more complicated
than the one presented here, since they also take into account other elements,
such as the current time of day and day of week. They are also capable of return-
ing more information that just a single numerical code with a text explanation,
like the amount of time the user is permitted to use in this session. These param-
eters are passed back to and used by the access server which performs the actual
PPP communication with the dial-up user. It is thus possible for the policies to
specify information that can actually impact the capabilities of the user during
the connection. A prime example of such measures is the invocations of access
lists, which, for example, can prohibit the use of network application such as ICQ
to the undergraduate students.

3.5 Accounting

The third and final part of the AAA subsystem is the one that performs all the
accounting functions. This subsystem accepts the data from the access server
and updates a database. The database structure is just a simple table where rows
are constantly being added, without any accumulation taking place.

The accounting information for each connection, as mentioned before,
includes information on the user, the time interval the connection was active,
communication parameters such as the caller phone number and the IP address
that was assigned, as well as traffic measurements in both packets and bytes in
both directions. By keeping all the data, one has the ability not only to produce
extremely detailed reports, but also to implement authorization policies based
on these measurements.

3.6 Reports

The Cordial system can generate a number of different reports, according to
the some user-specified criteria. The reporting subsystem, in order to be gener-
ally usable, was developed as an integration of a web-based front-end and a back
end that was capable of querying the connections database. Almost all of the
resulting reports are produced by aggregating the information that is kept for
each user connection.

Besides the reports that describe the use of the system per user or in total,
another series of reports is produced in answer to specific questions. An example
of such a report is the list of users that were assigned a specific IP address during
a time period, which can be helpful when investigating incidents of abuse if net-
work services.

3.7 User database

The Cordial system uses mainly two databases for its operation. The first is
storing all the information about the users, while the second one is storing all the
information concerning the actual connections, i.e., the use of the system.

The user database contains the list of the valid users, their passwords, and
the list of groups in which they belong. The data is stored indexed on usernames,
since all accesses are being done with this key. The main use of the database
occurs during the authentication process, where, given a username, the system,
retrieves the associated password. A secondary use of the database is for report-
ing facilities, where, given the username, pieces of information such as the real
name and phone numbers are retrieved.

As mentioned before, the user database is currently being populated by pro-
cessing Unix account information files. It is worth noting that, for the size of data
in our case, timing benchmarks showed that instead of comparing data and
updating the database with only the modifications, it was much faster to com-
pletely overwrite the database with the new information.

In the future, with the deployment of the LDAP infrastructure, this database
will no longer have a reason to exist on a local level, except as a caching mecha-
nism for performance reasons.

3.8 Connections database

The connection database stores records for each connection, and is indexed
by a unique identifying number for each connection.

The initial design called for a modification of the TACACS server to append
the data to the database. However, since the server already prints this informa-
tion to a log file, it was easier to merely process this accounting file and put the
relevant information in the database by means of a separate process.

There are two types of queries where this database is regularly used. The first
is, given a username, it should produce all the connections made by this user
since a specified timestamp. This is used to calculate the accumulated data per
user, which are in turn used in the different authorization policies. The second
query reports the active connection for a specified timestamp and a client IP
address, and is mainly used, as mentioned before, for tracking purposes in situa-
tions where abuse of network services was detected.

Apart from these simple queries, the database is also used to generate accu-
mulated data for the production of statistical reports depicting the total use of
the system.

3.9 Notes on database systems

Since there are many freely available database management systems, this
section provides a little insight into a number of factors that were deemed impor-
tant into choosing one of them.

The initial implementation of the database subsystem was based on SQL
databases, using, in fact, in the early stages mSQL and later MySQL database sys-
tems. However, at a certain point, it was perceived that the functional require-
ments were simply calling for a database system which could “store” and “get”
pieces of information, and no use was being made of the various “structured
query” features of the SQL databases.

Therefore, a design decision was made and the above mentioned database
systems were abandoned in the favor of the simpler but equal powerful Berkeley
DB system. This database system provides a generic structure containing a key
and data, which of course can accommodate whatever needs to be stored.

Besides the aforementioned connections database, which stores all the
accounting data, a number of “query” databases are also used. These correspond
roughly to indexes that are created for different columns of the same table in SQL
database systems. Since the set of usually asked questions on the data is pre-
defined, the definition of the appropriate fields to serve as keys in different data-
bases was straightforward.

A significant advantage would come from using a database that could handle
temporal data in an efficient way, since all entries in the connections database
are flagged by a timestamp and correspond to a time interval where the connec-
tion was active. All timestamps are stored as the usual Unix time format, i.e.,
seconds since the beginning of 1970, and time intervals are specified by a pair of
timestamps, for beginning and end. The following rudimentary analysis will out-
line the predicates and the operations that need to be defined for handling tem-
poral data.

There is only need for one boolean predicate for operation between times-
tamps, e.g., ts1 and ts2, namely:

EARLIER(ts1, ts2) := ts1 <= ts2

One can also define a couple of functions for conveniently selecting the first
or the last timestamp from a set:

EARLIEST(ts1, ts2, …) := MIN(ts1, ts2, …)

LATEST(ts1, ts2, …) := MAX(ts1, ts2, …)

Once time intervals, e.g. tr1, are considered, there is need to define a predi-
cate for the relationship of a timestamp to a time interval:

INSIDE(ts1, tr1) := EARLIER(tr1.start, ts1) AND EARLIER(ts1, tr1.end)

A corresponding predicate is also needed to determine whether a time inter-
val is completely contained in another:

INSIDE(tr1, tr2) := EARLIER(tr2.start, tr1.start) AND EARLIER(tr1.end, tr2.end)

The next step is to define functions like the union of time intervals, which
results in a new interval u, defined as:

u.start = LATEST(tr1.start, tr2.start) and
u.end = EARLIEST(tr1.end, tr2.end)

However, the above definition is correct if and only if:

INSIDE(tr1.start, tr2) OR INSIDE(tr2.start, tr1)

Otherwise, the two time intervals are not overlapping, and therefore their
union is either the empty set or two disjoint time intervals, according to the pre-
ferred definition.

In the case of commonly used database systems, the temporal data are sim-
ply stored as an underlying basic type. The most frequently used approach is the
use of long ints for timestamps and a pair of such types for time intervals. In
these cases, all the above mentioned predicates and operations have to be imple-
mented by the user, and performed, rather inefficiently, as arithmetic operations
on integers. Some database systems have the internal type of timestamps for
storing the information, but they do not usually provide any operations. There-
fore, the implementation of the temporal structure in conventional database sys-
tems is usually lacking in efficiency.

3.10 Notes on system development

It should be noted that almost all our design and implementation decisions,
while they were appropriate for our environment, do not represent the “correct”
solution for any similar problem. For each and every one of them, one should
carefully judge the functional requirements and the technical constraints that
are probably present, either explicitly stated or inherent in some other compo-
nents.

Different needs would almost certainly lead to different solutions. For exam-
ple, the need to accommodate a much higher volume of dial-up calls, should
probably point to a solution which utilizes a multi-threaded server which has
incorporated almost all the functionality of the system, since calling external
programs might result in a system that were unacceptably slow.

3.11 Future plans

While the Cordial system is currently fully functional and operational, a
number of enhancements is planned for the near future.

As aforementioned, the migration of all user data to an infrastructure based
on LDAP is currently under way. It is expected that, once this migration is com-
pleted, the authentication subsystem of the Cordial system will be significantly
simplified. The deployment of the LDAP infrastructure may also have beneficial
impact on other areas of the system, since it might also be used for storing the
policies applicable in different cases. Since the policies, as described above, are
in fact completely described and implemented in small scripts, they can easily be
stored as attributes on a special branch of the LDAP tree structure.

Another possible enhancement is the move towards using a database system
like PostgreSQL, which allegedly provides some of the temporal functionality
outlined above.

Last, but not least, the reporting functionality is planned to be extended to
include the production of customized reports for special needs. All the account-
ing data will also be migrated towards our data warehousing and data mining
facility, in order to be analyzed. The ultimate goal is to discover any possibly hid-
den noteworthy patterns within the data, which in turn could possibly give
insight about facts not previously discerned.

4. Monitoring and Reporting Facility

Another example of a tool that was developed for customized use is a general
facility for monitoring and reporting the status of various systems and services.
This system, which is yet unnamed, was developed out of growing needs to pro-
vide accurate information concerning the status of various servers and services.
In contrast to the Cordial system that was described above, this facility was
developed in a piecemeal way, with different components being designed and
implemented as the need arose. As a consequence, the resulting system is inher-
ently less well designed but, on the other hand, much more modular. This sec-
tion will present briefly its main evolutionary stages.

4.1 Stage 1: simplicity itself

The primary functionality that this facility was designed to provide was a
simple way of monitoring the status of the servers that were being used on our
facilities. Since the number of these servers is not prohibitively large, we could
get the same information by, for example, sending ICMP ECHO_REQUEST pack-
ets to each of these hosts, just by executing ping. Among the needed improve-

ments over the series of simple pings, were a continuous execution, so that the
status would get periodically updated, and a way of reporting the results so that
the system would be usable from any of our personal workstations.

4.2 Stage 2: the move to the web

While the earliest versions of this software were, in fact, developed in such a
way that they were running natively on the different workstations and operating
systems that we were using, it soon became apparent that the “proper” way to
have this information readily available was to publish it on a web page. Since the
page would be generated as a result of a program execution, this solution also
dealt with the need for continuous update of the information. All that was
needed was to arrange the program to execute again after specific time intervals,
which could be accomplished in a variety of ways.

4.3 Stage 3: monitoring services

After this simple reporting was installed and functioning satisfactorily, a dif-
ferent need arose that services, instead of simply computing systems, be moni-
tored. Since most of the services, such as e-mail, web, news, and so on, were
network-oriented, it was relatively easy, instead of performing the equivalent of
ping, to perform the equivalent of a client of these services. Since the functional-
ity in this point was diversified, a number of small programs was developed, each
performing the simple task of monitoring a single service. It should be noted that
these programs were extremely simple, rarely performing more than an initial
connection to the server. However, chances were that if, for example, a given
program could connect to a POP listening service and get a correct initial
response, the rest of the functionality of this service would probably be intact.
This was based on our observation that, for the services we were most interested
in, severe failures usually resulted in the server process terminating, which made
the service further unavailable to everyone.

4.4 Stage 4: major extensions

Once a number of such simple monitoring tools for different network ser-
vices were developed, we faced the need to monitor the status of things unrelated
to networking. An example of such measurement is the disk usage for the mail
spool disk partition on the mail server. I was at that point in time that two major
changes in the monitoring facility were introduced. The first involved the ability
to check a metric by executing a program remotely, on another computer system.
The second one was the realization that the results of the programs performing
the monitoring need not be boolean, and the corresponding extension of the
underlying mechanism to allow for arbitrary data to be communicated.

4.5 Current state

In its current state, the system is a collection of programs, each geared
towards monitoring and reporting the status of a single service. The vast major-
ity of these programs are written in Tcl and are therefore of rather small size.
Depending on the desired functionality, a number of Tcl extensions are also
used, such as Tnm for networking functions and expect for handling interactive
programs like telnet, as well as libraries, such as the cgi.tcl which generates
the web pages.

The diversity of the programs is hidden behind a unified interface, which is
solely web-based and can therefore be used from any system connected on the
network, even outside our offices. The security implications are minimal, since
the system can only perform monitoring and reporting operations. However, as
an added measure, the web server hosting the system is implementing rudimen-
tary security checks.

Besides the generation of web pages, the system also supports mailing the
relevant information to a predefined set of recipients, so that critical events can
be dealt with in a timely matter.

4.6 Looking back

In retrospect, the evolution of this software seems extremely simple, and the
modifications taken in each step seem almost trivial. However, the final result is
a collection of software that implements all the required functionality, and, what
might be more important, is simple and well-understood by the members of our
staff. The resulting software is completely adapted to our environment, which
has the advantage of being ideal for us, but also presents the disadvantage that it
might not be the complete solution for a different environment.

The resulting software is undoubtedly not unique. Software which addresses
the same needs, and which subsequently provides similar functionality, exists in
various forms. Two well-known examples of widely used tools are the commer-
cial HP OpenView suite and the freely available Big Brother system.

However, our experience has shown that the introduction and adoption of
tools should always be performed with great caution. This is obviously more true
in the case of massive environments like OpenView, but it is also relevant in the
case of the simpler solutions like Big Brother. The most scarce commodity is the
time of the people involved in the operation and maintenance of these tools, and
any introduction of new environments must be followed by the appropriate
training and familiarization. By developing custom tools, simple in both design
and implementation, and gradually proceeding towards an integrated environ-
ment, the adoption path is much smoother.

5. Conclusions

During the development and deployment of system and network administra-
tion tools like the ones described above, a number of observations about the cur-
rent state of such tools were made.

— The most obvious observation is that system and network administrators
need a lot of tools in order to cope with the difficulties they regularly face.
The correct tools, if properly learned, can save a tremendous amount of time
and help them accomplish tasks which would otherwise be impossible.

— Tools like the ones mentioned above are generally available in a confusing
variety of forms, with functionalities ranging from minimal to probably more
than will ever be used. To be able to choose correctly, the administrators
should ideally try as many as possible, in order to find the ones that closely
match their requirements, their environment and can be adopted in the most
straightforward manner.

— Commercial offerings tend to come in the form of all-encompassing, massive
systems, and therefore require a large and probably unavailable amount of
resources, both of human time and of hardware.

— On the other hand, the recent proliferation of freely available alternatives
has created a situation where the choice between them is becoming continu-
ously more difficult.

— The specific components of each network environment concerning systems
and services offered are different. While such differences might not be
important for some of the more mundane system administration tasks, they
are crucial for correctly designing, developing and deploying network
administration tools.

— The majority of generally useful tools comes in the form not of complete soft-
ware systems, but in the form of libraries that can be tailored to a specific
environment.

— Finally, one should never underestimate the tremendous advantage offered
by custom-made solutions. While the final result would probably be inferior
to a large number of already existing systems, and its completion would
probably continuously shift into the future, its focused functionality and the
familiarity of the administrators with it might make it much more useful
than any alternative.

