
Designing Server Software for Zero Down-time

Jochen Topf
jochen@remote.org

http://www.remote.org/jochen/

2002-03-28

1 Introduction

Many papers have been written about fault-tolerant hardware design, about
how to use clustering with hardware redundancies and automatic failover to
achieve high reliability in the face of hardware failures. But, as any system
administrator knows, most server breakdowns are not caused by hardware
failures. More frequently the cause for system downtime is software, and quite
often the reason is not a programming error, but bad design.

There are three distinct cases why a piece of server software might not be
running even if it is bug-free:

(a) because the software didn’t react well to a change in the environment,
e.g. an unexpectedly high load

(b) because of a reconfiguration of the software by the system administrator,
or

(c) because of software upgrades.

Reconfigurations and software upgrades are normally planned well before
the downtime, but the world wide Internet has no real ”slow” hours or days
during which maintenance work would go unnoticed. Invariably customers will
be affected.

The thoughts about these issues and about the solutions were born out of
my work for a large ISP designing and developing an email system. Many of
the ideas have been implemented in my POPular POP3 server [1], and I will
use it throughout this paper as a practical example. The lessons learned can
and should be applied to other types of server software as well.



2 Changes in the Environment

2.1 The Problem

Every system administrator knows this situation: The server is abysmally slow
and when he examines the system, there are hundreds or even thousands of
processes running. In many events the root of the problem cannot be de-
termined because the machine is paging constantly and too slow to do real
debugging. The mess of server software, database backend, CGIs or whatever
is running on the machine is hopelessly tangled, giving no clue as to which
part of the system is responsible, and which part is only a victim itself.

The typical strategy to get rid of the problem is to kill all server processes,
to wait until the load on the machine has dropped to normal levels and to
restart the service. Obviously, this is not the best strategy. It causes prolonged
downtime of the service and, to make matters worse, it can trigger the Yo-Yo
effect: When the server is restarted, all those people waiting for the web pages
to show up and madly pushing the reload button on their browser will connect
at the same time and will immediately push the server over the edge again
starting the game anew.

The reasons for such abnormal conditions are manifold: It could be the
Slashdot effect hitting a web server, the email mania around Christmas, a net-
work failure that leads to longer session duration or a DOS (denial of service)
attack by some blackhat. Or maybe it is just faulty client software.

You cannot defend against all those problems, because most of the time
the problem is in the client or the network over which you do not have control.
The only thing you can do is make your server bigger. But no matter how
large your server is, there will always be a way of overloading this server as
well. In the real world, of course, you never have enough money to make the
server as big as you want it to be.

Dealing with the overload without manual intervention also allows the sys-
tem administrator to use his time more efficiently and tackle the real underlying
problem.

Looking at the situation more closely, you will see that the problem is not
the overload itself — it is how it is handled. Most programs do not handle it
at all, they just keep using more and more resources (memory, CPU cycles,
disk bandwidth, ...) until one resource is exhausted. And then everything goes
to hell.



2.2 The Solution

The solution is not really hard to find, and generally not really that difficult to
implement either. The software has to detect the end of the resources nearing
and stop using them.

Many operating systems allow the setting of resource limits on processes.
Unfortunately, the problem is not one process, but the whole lot of them. The
remedy used by the operating system is to kill the offending process, which is
not really what we want.

For a typical forking network server, where each request is handled in a new
process, a simple measure would be limiting the number of child processes. The
web server Apache, for instance, does that. It is easily implemented, but not
really that effective in practice. Typically there are more programs running
on that machine than just Apache. A runaway CGI script can take the whole
machine down.

2.3 Detecting Overload

Instead of (or in addition to) the process limit, some measure of the system
load can be used to detect overload. On a typical Unix system the average
system load of the last minute is easily available. Other potentially useful
values include the I/O rates or the time needed to accomplish some typical
task on the server.

One word of caution, though: Most system metrics are averaged over the
last minute or so. If the system load rises sharply within a few seconds, it
might already be too late to react when you find out that the system is slow.
Only experience will help you find the right values for your system, where ”the
overload” begins and ends.

It is especially important to implement a mechanism like this if you have
widely differing system loads over time. Otherwise you have to build your
system so big that it can cope with the few seconds of overload every day,
which can cost you a lot of money.

A typical system where this problem occurs is a mail server allowing access
to mailboxes through the POP3 protocol. Many people configure their mail
client to fetch mail every hour. In some popular clients this is implemented by
accessing the mailbox every hour on the hour. For the server the result is a
huge peak in access numbers every hour. Normally this might be handled well,
but under exceptional circumstances — around Christmas time, or in addition
to an existing network problem — it might be enough to regularly send the
system over the brink.



2.4 What To Do When Overload Strikes?

Detecting the overload is only the first step; of course you will have to decide
what to do if your system goes into overload. You can just refrain from ac-
cepting new connections and this is what will happen if Apache has reached
its process limit. If the problem is short-lived, on the order of a few seconds
maybe, your server will process the connection backlog when the overload goes
away and everything is well. However, if the problem persists for a longer time,
new connections will be lost at some point — and with a heavily loaded system,
the ”longer” time can actually be very short.

Lost connections mean error messages to the user, they result in service
degradation, and they are actually making the problem worse, because many
clients will immediately retry the connection or users will madly click the
reload button. An obvious choice for a better solution would be to inform the
user about the overload condition and ask him or her to come back in an hour.
But many setups do not allow you to present meaningful messages to the user
(and coming up with a meaningful message is difficult anyway if you do not
know when the system will be usable again). Thus, the best solution depends
very much on the kind of clients, servers and the protocols used.

2.5 Each Case Requires a Different Solution

On average over 80% of POP3 mailbox accesses are reading an empty mailbox.
For users who check their mail very frequently (e.g. once every minute), this
percentage is even higher. So for the special case of the POP3 server the
reaction to an overloaded system could be to always show users an empty
mailbox. This will greatly reduce the load on the system, because most of the
load is generated by random disk accesses needed for opening the mailbox.

The presented solution is kind of a cheat, but if the overload condition is
short-lived, people will just find new mails a few minutes later, the same result
they would see if the mail server was slow in accepting a new mail from the
sender. Remember that this is only a last-minute measure designed to keep
the whole system from grinding to a screeching halt.

I have implemented this solution in the POPular POP3 server, and it has
proved to work extremely well. It is, of course, a very specific solution, but
it highlights the fact that some small and maybe unusual ideas can go a long
way to keep the system running under unusual circumstances.

For a web server the solution might be something completely different.
Maybe it can answer a request to a dynamic web page with the cached response,
as it might be faster than accessing a database or going through a CGI. In many
situations the page would be the same or only slightly different anyway.



Of course the system should not run in overload condition for long periods
of time. It is only an emergency measure to keep the problem from getting out
of hand, because, after all, you are not delivering the service you are supposed
to deliver, even if nobody notices. It is the system administrators’ job to
check how often and why the system goes into overload and tune the system
parameters or buy new hardware if problems persist.

2.6 Denial-of-Service Attacks

Defending against denial-of-service attacks is nearly impossible for the sim-
ple reason that, to the server, an attack looks like lots of normal legitimate
request. Still, something can be done. A robust server can help the system
administrator weather the attack, because instead of killing the machine, the
service will keep running, albeit slower. Real customers will still be served.
When the DOS attack is over, the system will return to normal conditions
without the intervention of a human being.

3 Reconfigurations

With most programs today, to reconfigure a server means to edit a config file
and then to restart the service or send the server a signal to reread the config
file. Of course restarting the service means it is not available for a short period
of time. When rereading the config file, the service interruption is generally
minimal and if the network listening port is kept open and the time to reread
the config file kept short enough, the client will not notice any interruption.

But there is a better model on how to reconfigure a running system: The
Unix kernel. You don’t have to reboot a machine to mount a file system, to
add an IP number or change the routing table. Instead you send commands
to the running kernel by invoking a system call, telling the kernel which part
of its configuration to change.

There are a few user mode programs that do a similar thing. The USENET
news server INN [2], for instance, can be controlled with the ctlinnd com-
mand. It can be used to create new newsgroups, change the running mode of
the server, shut it down gracefully, and many other things.

Similarly, the BIND DNS server [3] can be reconfigured partially with the
ndc command. Both these systems use a Unix domain socket to send com-
mands and replies between the controlling program and the server, although
BIND can be configured to use a TCP socket instead.

Both servers still use config files and some commands only instruct the
server to reread the contents of a particular file. So it is kind of a hybrid
system.



As systems get bigger and more complex it becomes ever more important
to be able to change the configuration seamlessly. Large systems change all
the time in response to customer demand or changes in the network. While
the impact of one configuration change might be tiny, together they can lead
to a lot of interruptions.

Is it not inconsistent that we frown upon operating systems which need
a restart when an IP number changes, but at the same time live with server
software that does the same?

Today more and more servers do not stand on their own but are part of
a server farm. In such a setting it really makes much more sense to have a
central server store the configuration and push all configuration changes out to
the servers as they happen. It is much easier accomplished and less error-prone
if we don’t have to change configuration files and restart servers all the time.

3.1 The Root Problem

When writing a program that supports runtime configuration, a few things
have to be considered. Static memory allocation, for instance, wont work
any more, the configuration has to be broken down into small bits that are
independent of each other, and some other issues. Most of them are easily
solved, but there is one single problem that may keep many a programmer
from using the scheme altogether:

Typical server software has to run as root, the only reason beeing that the
process can bind a new socket to a low (< 1024) TCP port. Many programs will
start out as a process owned by root, bind all the needed ports and then get
rid of the privilege changing their user ID to some other user. Yet, because we
want to be able to change everything on the fly while the program is running,
even to be able to open new ports, we have to keep running as root. From a
security point of view, this is unacceptable. Fortunately, there is a way around
it.

3.2 File Descriptor Passing

File descriptor passing is a little known and little used feature of Unix domain
sockets. After you have set up a connection between two programs using
a Unix domain socket, those programs can exchange file descriptors among
themselves. File descriptors are basically pointers to open files or sockets.
After a file descriptor has been passed to the other process, two pointers exist
to the same file or socket, one in each process. The effect is the same as when a
process forks and execs a new program, but existing processes can share their
file descriptors this way without one having to be created by the other.



Using this technique we can get rid of the ”has to run as root” restriction,
because we can have a little helper program running as root that will do the
socket binding and send the bound socket to the server program. (We will
later see that the little program can also help us with another problem.)

4 Software Upgrades

The third reason for service downtime is upgrading of the server software.
Even if the software is designed to work well in overload conditions and is
configurable while running, a software upgrade will in nearly every case be
done in the old fashioned way of shutting down the old service, upgrading the
software and starting the new service.

Frequently the effect is that the currently running sessions are lost, but
even if it is done cleverly, it means that the listening sockets will close for a
short time and if you have hundreds of connections per second to these ports,
a few thousand customers might be unhappy.

Also, when doing upgrades in this way, many problems will lead to a longer
downtime, because they have to be fixed while the server is down. Experienced
system administrators know about the potential problems, like ports that can
only be opened again after a timeout, and have their tricks to go around them,
but the process is still very error-prone.

A better approach would be to install the new software, start it, configure
it, switch over to the new version and only then stop the old program. Or
maybe not stop the old program at all but keep it running in case there is a
problem with the new version.

In the telecommunications world live upgrades have been the standard
operating procedure for years. The software in phone switching equipment
can be upgraded while the system is running. The old and new version of the
software will happily run at the same time allowing a seamless upgrade.

For some reason, though, it is not done on a typical Unix system. To
improve on the traditional way of upgrading software a few issues have to be
considered.

The first problem is installing two versions of the same software on a system.
Typical software package managers like RPM [4] do not really support this.
Upgrading the software is generally done by uninstalling the old version and
installing the new version. Of course you can always install from a tar file or
use special packages that have versioning information in all path names.



4.1 Files

Even if you can install the binaries next to each other, the installation might
conflict elsewhere. What about config files, log files, PID files, sockets, start
and stop scripts and other files that a piece of software needs to function
correctly? Let’s have a look at them.

There are typically several kinds of files a server is using:

Config files We don’t need config files, as long as we are doing run time
configuration, but even if we do, we can split them up into different
directories for each version or something similar.

Logs Logs are only a problem if you are not using syslog. If the software uses
its own log file, both versions can write to it if they make sure to open
the files in append mode.

PID file The new version will probably overwrite the PID file of the old ver-
sion. Instead more than one PID file can be used. Although it seems
counter-intuitive, it works well to include the process ID in the name of
the PID file, e.g. use /var/run/serv/serv.48176.pid as the PID file
for process ID 48176. Every time the software starts, it will create the ap-
propriate PID file and then make a link from /var/run/serv/serv.pid

to the real file. If a link already exists, it will be changed. If the soft-
ware shuts down, it will remove its own PID file and also remove the
link if the link points to a (now) non-existing file. So the canonical name
/var/run/serv/serv.pid will exist only if at least one instance of the
server software is running and it will point to the newest instance, which
is very close to the normal semantics of the PID file.

Sockets and named pipes They have to be kept separate from each other.
The same technique as with the PID files can be used.

Temp files We just have to make sure that the two versions are not using
the same temporary files, i.e. by using file names with the process ID as
part of the name or something similar. Fortunately, most software does
that anyway.

Start/Stop scripts Generally only one script that starts the newest version
is needed, because running two versions in parallel is only needed for the
relatively short switch-over phase. Having two scripts for the old and
new version is, of course, no problem if the version number is included
in the script name.



Database files Almost every server software uses some kind of storage or
database. For a mail server this is a number of mailboxes and the spool
files, for a web server it consists of the web pages itself, for an LDAP
server it might be a few DB-Files. Depending on the type of storage
(file system vs. database, internal vs. external, read-only vs. read-write,
availability of a locking mechanism, long-term vs. short-term etc.) either
both versions of the program have to access the same storage or they can
use different files, but it is highly dependent on the type of system and
there is no ”one size fits all” solution.

4.2 Listening Sockets

One large problem when running two versions of the same software together
and moving the service from the old to the new version is the question of TCP
ports. In the typical Unix server the program will open one or more sockets
when it is starting up and bind them to the ports it wants to listen on. Rather
sensibly, the Unix kernel prevents other programs from opening the same port
so that nobody else can hijack connections destined for the first program.

But the new version of the same program that we are starting to replace
the old version has to get to the port somehow. Closing the socket in the
old program and only then opening it in the new program is not a solution,
because for a short time the port would not be available leading to errors seen
by the clients.

The classical way for a program to get an already open file or socket is to
be executed by the program that has the file descriptor open. In our case the
old version of the program would have to be instructed in some way to fork
and execute the new version of the program.

There is another way: We have already seen in the last chapter that file
descriptors can be passed through a Unix domain socket. This mechanism can
be used to pass the sockets from the old to the new process, or a third process
can be used as a mediator.

5 Putting it All Together

Making software more robust in the face of overload and allowing seamless
reconfiguration and upgrades is only part of making a server really reliable.
Equally important parts are hardware setup and fault-tolerant design of the
software. Writing bug-free code is really hard, but software can at least be
written in a way that small bugs do not have catastrophic consequences.

Another important issue is monitoring. Too many systems are black boxes,
forcing the system administrator to use tools such as ps and system call tracers



to find out what is happening. To be able to react to problems in a running
system any complex software needs some ”peep-hole” specifically designed for
the system to allow the system administrator to glimpse what is going on
inside. Having extensive log files is equally important.

5.1 Implementation in the POPular Server

With the POPular POP3 server I have implemented many of these ideas in a
consistent way, although not everything is perfect (yet). POPular is intended
for large mail systems run in a distributed fashion on a server cluster. It is
designed in a way that failures and overload conditions do not propagate from
one host to another. The server uses the already described mechanisms of
limiting the number of processes and reacting to high load on the machine.

The POPular server itself uses no config files. Nearly all aspects of the
server configuration are changeable on the fly. New virtual servers can be
added, new authentication modules loaded and unloaded, port numbers, time-
outs, and many other variables can be changed.

Like INN and BIND the POPular POP3 server uses Unix domain sockets for
sending commands to the running server. ASCII commands not unlike those
in a shell are used, as they are easy for humans and programs to generate and
easy to parse. Use of Unix domain sockets for configuring the server is easy to
implement and easy to make secure, but it can only be a first step. A future
version should support remote configuration.

POPular writes extensive log files, and their level of detail can be configured
on the fly. Overload conditions and other problems are logged and clearly
marked if system administrator intervention is necessary. Through the use of
a shared memory region, a monitoring tool can be attached to the running
server to look at statistics and watch what each session is doing.

Two or more versions of POPular can run at the same time. They share
the same log file and mailbox storage but use different files for everything else.
When upgrading, the old version can be instructed to keep running as long as
there are sessions open and automatically quit when all work is done.

5.2 The Ringbearer

One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them.

For socket sharing between old and new version, POPular uses a tiny pro-
gram called ringd which is started in the background as root. The program
opens a Unix domain socket and waits for requests to arrive. If it gets a



request for a certain port, it will open a socket and bind the socket to the
requested port. The port is then passed back to the requesting program. Se-
curity is achieved by file ownership of the Unix domain socket 1 and checking
the configuration which ports are allowed to be opened.

This alone would suffice to solve the first problem: The server doesn’t need
to run as root any more. It also solves the problem of sharing bound sockets
between different versions of the same software, because the ringd process
keeps track of all requests and opened ports and will, when asked for the same
port again, return the already opened port and not try to open a new one.

The ringd process keeps track of all the ports it opens and who requested
them. A reference count makes sure that ringd closes unneeded ports.

References

[1] The POPular POP3 server is available under the GNU General Public
License.
http://www.remote.org/jochen/mail/popular/

[2] INN: InterNetNews
http://www.isc.org/products/INN/

[3] ISC BIND
http://www.isc.org/products/BIND/

[4] Red Hat Package Manager
http://www.rpm.org/

1This doesn’t work for some Unix versions like Solaris, but you can always put the socket
in a directory with restrictive ownership and permissions

http://www.remote.org/jochen/mail/popular/
http://www.isc.org/products/INN/
http://www.isc.org/products/BIND/
http://www.rpm.org/

	Introduction
	Changes in the Environment
	The Problem
	The Solution
	Detecting Overload
	What To Do When Overload Strikes?
	Each Case Requires a Different Solution
	Denial-of-Service Attacks

	Reconfigurations
	The Root Problem
	File Descriptor Passing

	Software Upgrades
	Files
	Listening Sockets

	Putting it All Together
	Implementation in the POPular Server
	The Ringbearer


