
Efficient real-time Linux interface for PCI devices:
A study on hardening a Network Intrusion Detection System

Amitava Biswas
Concordia University

Montreal, Canada
amitavabiswas@ieee.org

Purnendu Sinha
Philips Research
Bangalore, India

purnendu.sinha@philips.com

Abstract
Traditional software network interfaces in Linux do not deliver satisfactory real-time
performance. Hence alternative efficient real-time interfaces are required in network
monitoring, distributed systems, real-time networking and remote data acquisition
applications. Designing such a software network interface is not trivial. A PC based software
network intrusion detection application is studied as an example. Poor throughput and real-
time performance of traditional interfaces or their enhanced versions can cause packet
skipping and other non-obvious synchronization related failures, which may make the detector
ineffective. The effectiveness of the detector can be enhanced by improving its packet
capturing and dispatching interface. We achieve this by using an efficient real-time software
interface for a PCI Ethernet card. This paper describes the design and implementation details
of this interface and its deployment for Linux based network intrusion detection sensors. The
nuances of the system design for high speed packet capturing are discussed and the
advantages of the proposed design are demonstrated. This mechanism outperforms existing
packet capturing solutions - NAPI, PFRING and Linux kernel under heavy network load in
terms of higher load bearing capacity, packet capturing capacity and superior real-time
behavior.

Keywords
High bandwidth packet capture, high speed network monitoring, Linux

1. Introduction
Real-time networking, distributed systems, remote data acquisition/logging and control
applications require real-time software interfaces for devices in addition to real-time operating
system (RTOS) and suitable hardware. Real-time interface for Ethernet PCI network card is
especially interesting because it has extensive use in these applications. The implementation
of these interfaces are non-trivial and specific to operating systems (OS), however the design
principle is transferable. Software network interface (NI) designing for open source "Linux
like" or "Linux based" platforms is interesting because these platforms are quite popular in
commercial, research and development projects. At present these platforms use traditional
NIs. Only a few such open source real-time kernels [1] are available, and these platforms
generally offer NIs that are fashioned after traditional Linux ones [2]. The traditional software
NI, which constitute the network card driver, the kernel network stack and the socket
mechanism, is inefficient and have poor performance. It consumes higher CPU resources,
introduces higher packet delivery time, causes higher incidence of packet drops and delivers
lower bandwidth capacity [3,4].

A large volume of research work [4,5,6,7] is available, that focus on improving the efficiency
and capacity of traditional Unix/Linux network interfaces. However these did not address all
the multiple associated problems behind these inefficiencies, and did not identify the causal
relationship between real-time behavior of the underlying platform and the NI performance.
Some earlier work by the authors [3,8,9] had introduced a design for an efficient real-time NI
and demonstrated its benefits in a Network Intrusion Detection System (NIDS). However

authors had not discussed the details of the proposed interface, which would have been useful
to real-time network application and network security system developers.

Whereas, this paper illustrates the detailed architecture of the proposed interface and its
implementation for two Linux based OS options: Redhat 8 (custom low latency 2.4.18 kernel)
and vanilla Linux 2.4.24 with RTAI 3.1, a hard real-time co-kernel. It demonstrates how a
modified driver along with user space libraries can efficiently capture packets and carry out
packet processing instead of using the traditional NI based on Linux driver, kernel network
stack and socket mechanism. The proposed mechanism can be reused with any other PCI bas
mastering data acquisition cards or devices. This work was particularly motivated by the fact
that a distributed network intrusion detection system (NIDS) may be hardened against high
bandwidth network attacks by using this NI at strategic points. Therefore, this paper adopts a
case study on a distributed NIDS to demonstrate how the proposed interface can be applied to
gain significant advantages. Detailed discussions on the implementation aspects highlight the
nuances of system design for wire speed packet capturing. The operation of the proposed
interface is also explained, so that the design principles can be transferred to other platforms
and peripherals. At the end, NIDS performance related works are discussed for the sake of
completeness.

To expose the limitations of the existing packet capturing solutions we carried out all the
experimental work on modest hardware: PII 333Mhz CPU with 100Mbps networks. The
conclusions drawn based on observation on this hardware and network combination remains
valid for 4Ghz CPU with 1Gbps networks, as the ratio of CPU to network speed are in same
order for both cases (3:1 vs. 4:1).

2. Motivation: Vulnerability of NIDS
Effectiveness of NIDS has become key in protecting data network against hacker activity,
especially when the intruders employ sophisticated attacks with more computing resources at
their disposal. Hackers may attack, disable or bypass the NIDS before attacking the protected
resources [10,11]. A software NIDS often have limited performance which makes it
vulnerable to certain kinds of attacks. However a PC based software NIDS is preferred over a
FPGA/hardware NIDS, as it can implement complex, dynamic rules to suit rapidly changing,
complex and network specific attack patterns. But, a practical software NIDS running on a
Ghz CPU system can only match 100Mbps traffic rate [12,13], because it implements few
hundreds of computation intensive pattern matching and event co-relation rules. Such a NIDS
with insufficient capacity skips packets [14,15] and may manifest inadequate detection during
heavy traffic [16,17]. Thus its detection will deteriorate when loaded beyond its packet rate
capacity [18]. A resourceful hacker may overload such NIDS with a flood of smoke screen
packets to sneak past the real attack packets, which the NIDS may skip.

In addition to the possible inefficiencies in the NIDS application and in the underlying general
purpose commodity PC hardware, inefficient NI which is part of the operating systems (OS),
is one significant bottleneck factor. This inefficiency is not generally addressed directly,
instead more powerful hardware, multiprocessor or distributed systems are deployed to get
more capacity [12,15,19 to 22]. For load sharing and efficiency, the incoming packet traffic
may be distributed to an array of specialized network intrusion detection sensors (Fig. 1)
based on protocol, flow or some other criteria [12,15,20,21]. Two separate network segments
and interfaces, one for receiving, the other for sending, may be used wherever required to
improve the throughput. Even such distributed systems have limitations, they have certain
components which face full incoming packet load before it is distributed. The traffic splitter
analyzes and arbitrates the load dispatching, thus it faces the full load and may become the
bottleneck. The sensors also have to efficiently capture at high packet rates and leave enough
resources for the detection. In addition to these requirements, the distributed NIDS
components require to satisfy some real-time constraints to detect very complex co-ordinated
attacks. Instead of the sensors, the centralized alarm analyzer/corelator, which takes alarm

feeds (say as, UDP/IP packets) from different sensors can only suspect a complex attack after
carrying out more knowledgeable event correlation (Fig. 1).

To carry out effective correlation, all these temporally related alarms from different sensors
should arrive at the centralized corelator within a limited time span window. This is explained
by the following attacks situation (Fig. 2).

In a staged attack, the attacker sends first type of attack packet, which may arrive at the splitter
at time t1, whereas the second type of attack packet may arrive at time t2. The splitter may send
the first attack packet to sensor 1 and the second one to sensor 2, where they arrive at time t3, t4

and the corresponding alarms arrive at the corelator at t5 and t6. The alarms can be correlated
and the staged attack can be detected if |t6-t5| is bounded within the correlating time span
window tw, i.e. if |t6-t5| < tw. This is guaranteed if both (t5- t1) and (t6- t2) are bounded within tw.
This requires that the splitter, the individual sensors and the corelator have bounded response
times. If this is not satisfied then there is a certain probability that the detection will fail in
some cases. It is possible to increase the detection failure probability by selectively loading
some sensors. It is well known that the response time of a Linux system deteriorates with the
incident network traffic (or interrupt) load [23]. A hacker might send a flood of first type of
attack packets to load sensor 1, and send a single second type of attack packet which is detected
by sensor 2. Sensor 1 will introduce a large time delay in t5, whereas sensor 2 will not delay t6.
As a result |t6-t5| can be greater than tw, hence the corelator can fail to detect the staged attack.

The alarm corelator can not allow a wider time window tw to accommodate the time jitter
introduced by the sensors, as a larger tw increases the computation, reduces the throughput of
the alarm corelator [9] and thus increases its packet skipping vulnerability. This system
constraint demands that the individual sensors and the splitter should complete their tasks
within bounded time. Inefficient NIs add non-deterministic delay in the packet delivery latency
and the response time in each NIDS component (Fig. 2). This may jeopardize detection of
sophisticated attack patterns. Any Linux based components using traditional NIs are likely to
suffer from these performance limitations because Linux is not an RTOS and these traditional
NIs are inefficient. Next section presents how the performance limitations of traditional NIs
depends on poor real-time behavior of the underlying OS and in addition to other factors.

Tapping packets from
target network

NI
 1

NI
2

Traffic
splitter

Hardware
Switch

Hardware
Switch

Sensor
1

NI
1

NI
2

Sensor
2

NI
1

NI
2

Sensor
n

NI
1

NI
2

Central
alarm

analyzer/
co-relator/
manager

NI

Fig. 1: Distributed NIDS deployment

Fig. 2: Failed detection due to timing failure

Splitter

t1 t2Sensor 1

t3Sensor 2

t4

Co-relator

t5 t6

Ideal scenario

Time

Splitter

t1 t2Sensor 1

t3
Sensor 2

t4
Co-relator

t6 t5

Worst case scenario

Time

3. Analysis of network interface performance limitations
There are two distinct performance requirements for the NIs. The NI should be efficient in
terms of lower CPU and memory utilization, and they should have bounded packet delivery
task response times [9]. An efficient NI may have lower average system response time, but it
may still manifest a few cases of very high transient response times. By making the system
efficient do not reduce these large transient response times. The only way to bound these times
is to adopt a real-time OS or task scheduler. The traditional Linux NIs do not satisfy these two
requirements. Even the enhanced NIs proposed by other researchers still suffer from
performance limitations even at moderate packet arrival rates [3]. Fig. 3 presents the task
model for the sensor with two traditional Linux interfaces. The arrow blocks signify distinct
task threads. The user space NIDS task and the system calls are in the same task thread. The
system response is the sum total of all individual task responses. The buffers act as an interim
storage space between each pair of "producer" and "consumer" tasks. The producer task deliver
data to the buffer and consumer task picks it up. This allows these two tasks to execute
independent of each other to a certain extent. However buffers may overflow if the producer
and consumer tasks executions are not balanced. Performance limitations of these traditional
and enhanced NIs are primarily due to: (1) large average packet receiving task response times;
(2) large average context switching times; (3) buffer overflows due to execution imbalance of
producer-consumer task pairs; (4) large jitter in the context switching times; and (5) large jitter
in their response times of the receiving task threads. In [3] authors have shown how the
response time jitter causes packet skipping due to buffer overflow, high packet delivery
latencies, lower throughput and limited system capacity.

Some factors which are behind high receiving task response times, are:

• Significant execution time components of tirqlat,1, tres,ISR,1 and tCS,1 that are involved in
interrupt servicing which are collectively known as “interrupt servicing overhead”. Usage
of expensive kernel locks, data copy or memory allocation operation to materialize zero
copy in the interrupt servicing routing (ISR) task, are some known causes behind high
execution time component of tres,ISR,1. Similar issues are present at the transmitting
interface, NI2, which effects the execution time components of tirqlat,2, and tres,ISR,2.

• Significant protocol processing time in the kernel are due to excessive layering and
associated function call overheads, some of which may be redundant for most packet
capturing or UDP processing. This affects execution time component of softirq task, tres,sirq.

• Expensive data copy operation in the socket layer, when the packet payload is transferred
between kernel and user space memory during the socket read/write system calls, this
affects execution time component of tres,sys,1 and tres,sys,2.

• Similarly excessive function and system call overheads associated with reading/writing a
socket from user space also affect execution time component of tres,sys,1 and tres,sys,2.

 tres = (tirqlat,sw, 1 + tres,ISR, 1 + tCS, 1 + tres, sirq + tCS, 2 + tres, sys,1 + tres, NIDS + tres, sys,2 + tirqlat, sw,2 + tres,ISR, 2)

DMA
buffer

ISRSocket
buffer

System
call

NIDS
task

System
call

Alarm
out

NI 1
OS kernel

User space

NI 2
OS kernel

 tres,ISR, 2tirqlat,2tres, sys,2tres,NIDStirqlat,1 tres,ISR, 1 tCS,1 tres, sirq tCS,2 tres,sys,1

Packet
in

Socket
buffer

Softirq
task

Packet
queue

ISRDMA
buffer

Fig. 3: Task model of the sensor with two network interfaces

High interrupt handler and scheduler latencies affects the interrupt latency time components
tirqlat,1 , tirqlat,2, the context switching times tCS,1, and the user space task latencies tCS,2.
Execution imbalances in the receiving tasks occur in Linux because ISR has highest relative
priority, software interrupt (softirq) tasks have medium priority and user space task has the
lowest priority, hence these static priority assignments cause “receive livelock” or buffer
overflows. In Linux, this problem is addressed by limiting the number of instances of
producer task executions by limiting the size of the packet queue. But this only delays the
onset of this problem but does not completely solve it.

High jitter in response times of the packet receiving ISR, kernel, user space task threads and
the context switching times are caused by:

• Preemption of the receiving tasks by a new interrupt. Linux interrupt handler preepmpts
any task, even a high priority ISR if another high priority interrupt arrives, to run a new
ISR to service the most current interrupt. In presence of high interrupt rate, the ISRs may
be nested which can lead to fairly high response jitter in ISR or any other task thread.

• Presence of long critical section paths in Linux. These critical sections are execution paths
when all interrupts are kept disabled. Fairly large critical sections of over 200 msec are
reported for non-preemptable 2.4.x Linux kernels [24]. A few of such critical sections may
still remain in 2.6.x preemptable kernels. Some users have complained of poor latencies in
2.6 kernels under some situations, authors have also noticed significant long latencies in
2.6.x based Fedora core 3 kernels, when observed over long duration under heavy interrupt
loads. These long critical sections may add significant jitter to the interrupt latency time
component tirqlat. Thus these critical sections adversely affect the OS clock timer and all
other software kernel timers, all of which are driven by PIT interrupt in Linux. The critical
sections may also affect any other receiving task response times directly, if such critical
section is executed within the ISR which preempts the current packet receiving task.

Some solutions have been proposed by other researchers which partially address some of the
above mentioned problems. An analysis of those can be found in [3]. Alternative interface
mechanisms like NAPI polling driver [25] and PFRING interface [14] suffer from buffer
overflow, data copy, memory allocation, redundant kernel processing, context switching related
inefficiencies [3]. nCap [26] is an improvement over PFRING, but it still implements two task
threads, one ISR, and a user space task in the receiving side, therefore vulnerable to receive
livelock problem at a higher traffic rate. Moreover its interrupt based operation introduce high
jitters in the system response, therefore nCap is expected to suffer from high packet delivery
latencies at high packet rates, similar to PFRING. Real-time OS or kernels like RTAI [1] can
address the response jitter related limitations. Reference [8] presents the relevant discussions on
this aspect. RTAI based RTnet real-time stack [28] can bound the network processing response
time but it still incorporate many inefficiencies that the traditional Linux NI suffers from. It had
partially tightened the Linux kernel stack but have not completely removed all inefficiencies.
More importantly RTnet can not be used in a generic application where the transmitting node is
unknown and thus can not be bound to the receiver by the RTnet protocol. The design
presented in the subsequent sections address most of the remaining problems that were not
addressed by these solutions.

4. Design overview and rational
Fig. 4 presents how the proposed real-time "DMA ring" interface is deployed to improve the
Network Intrusion Detector Sensor throughput. DMA ring on network interface card 1 (NIC1)
captures the incoming packets from traffic splitter and makes it available to the NIDS
application. The NIDS application transmits alarm packets, if any, through the other DMA
ring via NIC2. There can be another traditional socket based interface for sensor management
which is not a load bearing component. For superior throughput the detection rules should be

stored in memory which can be updated via the management interface. This scheme can
eliminate expensive run-time system calls in the sensor.

The task model for the sensor with the proposed proposed interfaces is presented by Fig. 5.
The model is simpler, it consists of a single task thread and only two buffers, one for receiving
the packets, the other for sending out the alarm. The NIC firmware task places the packet in
the DMA buffer without involving the host CPU. The user space task which run on the host
CPU, periodically polls the DMA buffer, picks up the packets and analyzes them. If there is
an alarm to be sent, the same user task constructs the alarm packet and places it in the
transmitting DMA buffer. The transmitting network card periodically polls this DMA buffer
and on finding a packet, it sends it. There is no separate task thread in the transmitting portion.
For sake of simplicity now onwards we only discuss the receiving side of the architecture.

In this architecture we have reduced the average response of the packet capturing task by
employing the following tactics:

• Simple hybrid interrupt polling mechanism with fixed low frequency polling is employed.
Polling is invoked by a hardware based periodic timer.

• Switching between interrupt and polling modes based on the expected packet arrival rates.
If the expected packet arrival is larger than a threshold then operation is switched to
polling mode, if it is less, then interrupt mode.

• A single user space high priority task thread is employed to carry out the packet receiving,
packet analysis and detection task.

• A shared staging area is employed for all packet processing work. Given the system's
worst case response jitter, a right size for the staging area is chosen so that it does not
overflow. A big common staging area avoids the need for data copy or buffer transfer
(explicit zero copy) operations across layers/domains and the need for memory allocation
in real-time to replenish the DMA buffer.

The task response jitter is reduced by the following strategies:

• By choosing a low fixed polling rate the interrupt load on the system was limited even at
high packet rates. Low interrupt load results lower system response jitters [23].

• An OS is employed which either provides real-time support for user space task or have
low average context switch and low task response jitter within the operational range.

The hybrid polling mechanism ensures that, for lower packet rates, the receiver works
asynchronously with interrupts and manifests low packet delivery and detection latency. At

Packets
in

Interface
to manage
sensor

Sensor
Packet

Capturing
DMA ring

NIC1

Alarm
dispatching
DMA ring NIC2

NIDS
application Socket

i/f
NIC3

LKM2

LKM1

Alarm
out

Fig. 4: Sensor with DMA ring Fig. 5: Proposed sensor task model

tres = (tres, poll + tres, NIDS + tres, disptch + tschdl lat)

Alarm
out

Packets
in

NIC 2
DMA
buffer

Polling + NIDS
+ dispatch

NIC 1
DMA
buffer

User space

tres,poll tres, NIDS tres,disptch tschdl lat

high packet rate, the synchronous polling mechanism avoids CPU resource wastage due to
high interrupt service overheads. The reclaimed CPU time is utilized for useful packet
analysis and detection activities. Fixed polling period avoids the need to program the timer in
real-time, hence CPU resources are also conserved. The timer needs to be set only once when
the polling is started. High resolution, sub millisecond level software timers are not available
in Linux. So a hardware timer is required to get microsecond level periodicity, to serve the
100Mbps or 1Gbps networks. Using a hardware timer instead of Linux kernel's software timer
also makes the polling engine less vulnerable to high kernel scheduling latencies and jitters.
The hardware timer delivers events to the OS kernel by interrupt mechanism. Low polling rate
achieves two purposes. A low polling rate causes a lower interrupt load, hence the OS can
maintain its soft real-time response behavior at lower interrupt rates. In addition to this,
infrequent polling limits the effect of polling overhead. The timer ISR delivers the timer
interrupt event to the poll engine and invokes the polling cycle. Each polling invocation has an
associated overhead due to interrupt servicing and context switching between timer ISR and
polling engine task. With a lower polling cycle rate multiple packets can be serviced in a
single poll cycle. This amortizes the polling overhead over many packets and minimizes the
effect of polling overhead.

Using a single thread obviates the need for three things: the interim buffers; context switching
times and task balancing between multiple tasks. Single task thread and single staging area/
buffer has simple dynamics and therefore it is amenable to scaling and tuning unlike Linux,
NAPI and PFRING. Under high network load, the user space thread performs all the required
operations - polling for packets and detection.

This monolithic architecture allows a single staging area for all packet processing and analysis
operations. De-layering also reduces the need for interfaces between the layers and the
associated function call overheads. A single staging area would require that the DMA buffer
be shared with user space and be made the staging area. The DMA buffer should be big
enough to contain the effect of task response jitters and avoid buffer overflow. Mapping DMA
memory area to user space avoids the data copy operations between NIC layer to kernel and
subsequently kernel to user space.

By collapsing all the receiving, processing/detection and transmitting tasks into a single
thread, the entire problem is contained to a single tractable problem of a managing a single
task response jitter. The problem concerning user space task response jitter is addressed by
reducing the interrupt load on the system or by choosing an appropriate OS. Avoiding
interrupt based operation minimizes interrupt load in the system which drastically reduces
response jitters. However this problem can be best addressed at the OS level, not by a solution
at the application level. Therefore an OS with better real-time response is also needed. In case
of vanilla Linux 2.4 kernels, very high interrupt latency and kernel-to-user-space context
switching times cause DMA buffer overflow at high packet rates. Hence we used Redhat 8
kernel which has lower kernel-to-user-space context switching times. We also ported this to a
hard real-time platform concocted with RTAI co-kernel and vanilla Linux. DMA ring not only
improves efficiency but also enhances the real-time behavior of the system, especially when a
general purpose OS like Redhat is used.

We choose a polling period of 122 µsec (8192 Hz) which is in the order of the packet delivery
latency (88 to 110µsec) for the Linux kernel for the given hardware. A higher polling period
can be chosen for a higher speed CPU. The polling is clocked by the RTC timer interrupts.
Instead of RTC, LAPIC timer can be used. The poll engine computes the average packet rate,
which is weighted in favor of most recent rates. The system uses interrupts at low packet rates
and switches to polling mode if the average packet rate is beyond a threshold (set to 8.3Khz).
By setting an optimum threshold, mode transition can be controlled and system performance
can be further optimized for a given platform. A single large DMA buffer of 1024 packets for
Redhat 8, or 64 packets for RTAI, is implemented as a circular queue (ring) and is shared
between kernel and user space by memory re-mapping (mmap). The polling engine runs as a

high priority real-time task (RT FIFO, priority = 99). The user space and DMA memory is
locked in the RAM so that none is swapped out to disk to deteriorate real-time response.

Thus, we have employed additional strategies to avoid the following problems - context
switching between ISR, softirq and user space; buffer overflow; lack of execution balance
between tasks; higher kernel-to-user-space latency; data copy; memory allocation; high
polling or interrupt service overhead and in-deterministic polling period. By having a single
buffer, single user space thread, low fixed polling rate and shared staging area on a low
latency OS we have addressed most of the problems associated with NAPI and PFRING. Next
section presents the implementation for Linux Redhat 8 and RTAI.

5. Architecture and implementation
5.1 Overview

The detailed architecture with all its components is presented in Fig. 6. The whole architecture
is packaged in three components - (i) a Loadable Kernel Module (LKM) which would replace
Linux kernel's existing network card driver, and (ii) a user space polling engine and (iii) the
user space application that analyzes/processes the packet.

All codes that either interacts with hardware directly or exploit any shareable kernel resources
are made part of the kernel and packaged in the LKM. These codes are invoked by the user
space polling engine via standard open(), mmap() and ioctl() system calls. The open() call
initiates the communication mechanism between user space and kernel space (LKM) code, the
mmap() call creates a shared memory space between the two domains during setup time.
Whereas ioctl() calls are used to exchange control between these two domains during
operation. Two parameter can be passed in an ioctl() system call, one can distinctly identify
the particular kernel code to call, the second can be the argument. The ioctl counterpart in
LKM, implements a switch conditional structure, which switches control to the appropriate
case statement code block based on the first parameter. To deploy this interface in a NIDS
application, like "snort", which is based on the "libpcap" packet capturing library, the user
space polling engine should be implemented within the library, by modifying its two source
files "pcap-linux.c" and "pcap-int.h". The polling engine will be initialized when the
"pcap_open_live()" library function is called from within the NIDS application, and the
polling will begin when the "pcap_read_linux()" function is called. The rest of the packet
analysis will take place when the poll engine returns control to the NIDS application through
the usual libpcap "callback()" function route.

Loadable Kernel Module : The NIC specific and hardware related codes are kept in the LKM.
The LKM takes advantage of the rich set of standard Linux kernel API to set up the NIC
hardware and DMA ring. This LKM once developed can be reused with different applications.
The LKM included code segments that defines all the standard components for initialization
(constructor), exit (destructor), and other Unix file operations. The LKM developed for Linux
and RTAI are slightly different. This sub-system includes the code to: (i) define LKM
components; (ii) setup the NIC hardware and allocate software resources; (iii) setup the DMA
ring; (iv) configure and start the NIC for operation; (v) map DMA ring to the user space; (vi)
ioctl function codes that enables the polling timer; (vii) ioctl function code that enables the
NIC interrupt; (viii) the interrupt service routine (ISR) for NIC interrupt; and (ix) ISR for
polling timer interrupt. The LKM also includes the DMA ring/buffer, which is setup in the
kernel memory.

The user space polling engine is generic, simple and portable component that can work with
any NIC or host architecture. It includes - (i) code to request mapping of the DMA ring in user
space; (ii) the polling engine logic; and (iii) "call back" function.

The existing Linux NIC driver for the chosen network interface card (NIC) hardware was
modified to implement the required LKM. To deploy this architecture, the LKM is simply

loaded in memory instead of the existing NIC driver and the user space polling engine is
executed from the user space. No other modification in OS or in the hardware is needed.

5.2 Implementation in Linux

All the codes were developed in "C" and compiled by GNU "gcc" compiler (ver 3.2) that
came with Redhat 8.

LKM and setup operations: As Linux NIC drivers generally do not provide any mechanism
for user defined interfacing with the user space application threads, so a mechanism was
added to the driver. This was achieved by declaring/ setting up a miscellaneous device and
implementing the device operations in the LKM. The kernel module/ driver can be accessed
from user space though this file or device node id of the miscellaneous device. Functions like
ioctl, mmap open and release counterparts define the implementations for the file/device
operations inside the LKM. The module initialization code registers the "miscdevice" with the
unused available major inode number 10 and minor number 240, whereas the exit code de-

Fig. 6: DMA ring architecture for NIDS application

Hardware
layer

User
space

Kernel
space

Network
Device (NIC)

Loadable Kernel Module

Kernel module code -

• Module component definition.
• NIC hardware setup.
• DMA ring setup
• NIC configuration and startup
• DMA ring mapping to user space.
• ioctl() for polling timer (RTC)
• ioctl() for NIC interrupt
• ISR for NIC
• ISR for polling timer (RTC).

DMA
transfer

DMA ring

Libpcap library

Call to wait for NIC
interrupt

Polling engine

Read

Mapped
DMA ring

Read
pointer

NIDS application

Calls

Packet processing
callback function.

Initializes & starts

ioctl interfaceOpen, mmap interfaces

Call to wait for
polling interrupt

Engine startup code

• Open misc device
• mmap request
• Set descriptor and

buffer pointers
• Set thread to high

priority & pin
memory to RAM

Write
pointer

registers it. Details about the modifications carried out on the existing NIC driver are
presented later. Some of the implementation details are specific to the chosen NIC, which was
3Com905B-TX for our case.

The code that set ups the NIC hardware performs a series of setup tasks to initialize the NIC
hardware and allocate software resources to manage the NIC hardware, according to the
following sequence:

• The LKM inserts itself, as the driver for the NIC, to a link list maintained by the OS by
pci_module_init() kernel API call.

• Wakes up the NIC hardware and assigns an interrupt line (IRQ) and enables the NIC by
pci_enable_device().

• Allocate memory resources, i.e. data structures to manage a Ethernet device, by
alloc_etherdev().

• Allocates I/O ports for the NIC by request_region() API call.

• Enables NIC's DMA controller and configures the same by pci_set_master() and
pci_write_config_byte() calls.

• Sets up the ISRs for NIC and hardware timer interrupts. The periodic polling timer is
implemented by Motorola's MC146818 based real time clock (RTC) chip available on
Intel x86 motherboards.

• Sets up the data structure in the host memory for constructing the DMA ring. The DMA
ring consists of two parts, the descriptor ring and packet buffers (Fig. 7).

The descriptor ring is a chain of descriptor elements. Each descriptor element points to a
contiguous memory segment, the packet buffer, which holds the packet data. The NIC
places the packet in the packet buffer by DMA transfer, so the packet buffer has
associated DMA mapping. The descriptor part holds the addresses and status information
about the locations which actually contain the packet data. The descriptor elements
provide the target host memory addresses to the NIC so that the NIC can make DMA
transfer to those locations. The descriptor ring is constructed as part of NIC hardware
initialization task. The packet buffers are allocated later when the NIC is started up for
operation. Fig. 8 explains the descriptor details and its functioning. Each descriptor
element comprises of four fields. The "next" field is a pointer which points to the next
descriptor element. Bit 0-12 of the "status" field indicate the length of the packet in bytes
which is transferred by the NIC to the host memory. "Address" field points to the location
of the corresponding packet buffer in host memory "DMA region" for which DMA
mapping has been generated, and the "length" field stores the length of the packet buffer
in host memory. The "next" field of the last descriptor item points to the first descriptor
item, so that the end is wrapped around to form a ring. The consecutive descriptor
elements are in a contiguous memory segment so that NIC can iterate over them with
small memory strides. Smaller memory strides minimize DMA address cycles and the PCI
and FSB bus holdup during burst DMA operation. Once the descriptor ring is constructed,
and the address of the entry point of the ring is transferred to the "up list pointer register"
in NIC's onboard memory. The NIC can get the entry point on the ring, iterate over the

Fig. 7: DMA buffer data structure

Descriptor ring
contains addresses

Packet buffers
contain packet data

Points to

Packet
buffer

Descriptor
element

ring, fetch the descriptors from the host memory address, extract the address of the target
location in the host memory and make DMA transfers to the target location. This data
structure and mode of operation allows the flexibility to choose any DMA ring size. All
the addresses stored in this data structure are true physical addresses.

• The LKM sets up a watchdog timer, configures the media and media access protocol
(MAC) parameters for the NIC by programming its EEPROM and reserves resources for
the receiver FIFO buffer on the NIC hardware. It also initializes the receiver descriptor
ring by resetting all the "status" fields.

• Configures and enables other NIC features like packet check-summing.

The DMA buffer is implemented as a circular queue in form of a ring. This circular DMA
buffer is shared between kernel and user space by memory re-mapping, so that once the NIC
firmware task places packets in the buffer then the user space polling engine can directly
access the data placed in the DMA memory to process it. Bit 13-15 of the "status" field in the
descriptor element provides the synchronization between the user space "consumer" thread
which picks up the packets from this circular queue and the NIC firmware "producer" task,
which is places it. A certain non-zero value in these bits signifies that the corresponding slot
in the ring is filled with fresh packet ready for pick up. The NIC firmware task writes this
value in these bits after DMA transfer of each packet. The user space "consumer" thread resets
these bits after completely processing the corresponding packet. The user space thread
operates a read pointer on the circular queue to mark the current packet for pick up and
processing. Once the user space gets the entry point on the circular queue it sets up the read
pointer and thereafter it simply iterate over the mapped DMA ring.

The packet buffers of DMA ring is setup during the NIC activation. The LKM utilizes a new
function, dev_alloc_skb_from_page() to allocate a group of contiguous memory pages and
constructs packet buffers from these memory pages. Another new function,
dev_kfree_skb_from_pages() dissolves the packet buffer and frees up the memory pages.
These two library functions were developed as part of the present work and can be reused to
implement LKMs for other NICs. These two functions are analogous to existing Linux kernel
API functions, dev_alloc_skb() and dev_kfree_skb(), which are used to allocate and free
memory during construction and destruction of the packet buffers, "sk_buff".

When dev_alloc_skb_from_page() is called, it allocates a cluster of contiguous memory
pages, puts them in a pool, and then constructs a single packet buffer from the first available
page in the pool and returns it. In subsequent function calls, packet buffers are constructed
from the pages available in the pool and returned. If the pool gets exhausted then a new cluster
of contiguous pages are allocated in the pool. The memory pages were also pinned in the
memory by SetPageReserved() Linux kernel API function call, so that the Linux memory

Fig. 8: Data structure for the receive descriptor ring

Up list pointer register
in NIC memory

Host memory

 Packet buffers
DMA region

Entry point

Next Status Addr Length N S A L N S A L

manager do not swap out these pages to the disk. Pinning the DMA memory is required for
successful DMA ring operations. A Linux memory page is 4096 bytes long physically
contiguous memory segment. Many memory management operations takes place with page
level granularity. This function is different from the existing API function - dev_alloc_skb(),
which allocates a contiguous memory segment from any available pages, therefore do not
ensure that consecutive packet buffers are always placed contiguously within a page.
Grouping packet buffers in pages is necessary to map them in the user space and disable their
swapping to disk. Mapping and disabling page swap is performed by per page basis, whereas
memory is allocated with byte level granularity. So this new memory allocation function was
necessary. Putting all packet buffer in contiguous memory may also improve the cache hits
and the CPU's translation look ahead buffer (TLB) efficiency. The other new function,
dev_kfree_skb_from_pages() dissolves the packet buffer and frees up the page when all
packet buffer from that page has been dissolved. It replaces existing "dev_kfree_skb()".

The DMA buffer sharing across kernel to user space border is achieved by a standard Linux
(and Unix) mechanism, the mmap() system call. Both kernel and user space threads address
memory by virtual memory addresses. The OS and the CPU carries out the virtual to physical
memory address translation whenever memory is accessed. Normally the kernel and user
space virtual memory addresses are mapped to two exclusive physical memory segments. But
for memory sharing, a certain portion of physical memory which has already been mapped as
kernel virtual addresses may be remapped as a segment of user space virtual addresses. To
share memory, the user space thread makes a request by mmap() system call. In response, the
kernel level mmap counterpart re-maps the requested number of pages to the user space by
using remap_page_range() kernel API function call. The LKM implements the kernel
counterpart of the mmap() function. This function remaps the kernel memory pages to
contiguous user space virtual addresses. Fig. 9 presents these mapping relationships.

The polling engine: The polling engine is the heart of the architecture. The flowchart for the
polling engine logic is presented in Fig. 10. The top portion of the poll engine logic, above the
dotted line, is implemented in the user space, and bottom portion is implemented in the LKM.
The portions of the polling engine that directly interact with the hardware or kernel software
resources run in the kernel space.

When there is no packet to process, the poll engine blocks itself to yield the CPU, instead of
spinning in loops and wasting CPU time. The polling engine relies on the task blocking/
unblocking mechanism provided by the kernel API (refer text box, below). The polling engine
runs in an endless loop. To block itself, the user space polling engine thread makes an ioctl()
system call. The ioctl function that blocks to wait for the NIC interrupt is called from user
space with the first argument defined as an integer constant which corresponds to "wait for
NIC interrupt". The ioctl that blocks and wait for timer interrupt is similarly called with its
first parameter defined as "wait for timer interrupt". The ioctl counterpart in the LKM blocks
the current user space thread in a wait queue by making wait_event_interruptible() call.

Fig. 9: Mapping relationship between kernel and user space DMA ring components

Descriptor ring portion Packet buffer portion

DMA ring is mapped as contiguous user
space virtual addresses

Components of DMA ring in non-contiguous
kernel virtual and physical addresses

Descriptor ring

Page clusters containing packet buffers

Mapping relationships

The blocked user space thread is woken up either by the periodic RTC timer interrupt or by a
NIC interrupt event. The ISRs which run in response to the interrupt events actually wake up
the blocked user space thread by wake_up_interruptible_sync() call. The ioctl call returns to
the user space when the user space thread is woken up. The polling engine decides whether to
block and wait for a NIC interrupt event or to block and wait for the RTC timer interrupt
event.

The NIC raises interrupt as soon as it completes DMA transfer of a packet to the host
memory. In every ISR cycle the NIC interrupt is disabled. This interrupt is enabled later by

Wait queue is a Linux mechanism to block tasks and wake them up in future. To block a task, it
is inserted in the wait queue and to unblock it is taken out of the queue. A wait queue is
constructed by DECLARE_WAIT_QUEUE_HEAD() kernel API macro call. A current task
thread blocks itself by making wait_event_interruptible() Linux kernel API function call. This
function blocks the current task thread only when a NIC or timer interrupt event has not yet
happened, if an interrupt event has already happened then the current task does not block and the
function returns immediately. The boolean variable that keeps track of the interrupt event is set
in by the ISR. This variable is explicitly reset in the LKM's ioctl code to re-arm the mechanism,
when the wait_event_interruptible() function returns. The blocked task residing in the wait
queue is unblocked or waked up by wake_up_interruptible_sync() kernel API function call. A
separate task thread, which is currently running, wakes up the blocked task by calling this
wake_up_interruptible_sync() function. The waked up task is scheduled to run after the waking
task thread exits. Upon waking up, the wait_event_interruptible() function, that was responsible
for blocking the task, returns.

ioctl(wait for timer interrupt)

Enable NIC interrupt

Forecast >
threshold

Packets
present ?

Polling timer
running ?

Fig. 10: Polling engine logic

NoYesPolling timer
running ?

NoYes

NoYes

Block and wait for NIC interrupt Block and wait for timer interrupt

Waked up by timer interruptWaked up by NIC interrupt

LKM

User space portion

Disable timer

ioctl(wait for NIC interrupt)

Enable timer

Process packets
 (protocol & event data)

Forecast expected packet rate

Yes No

the polling engine thread when it shuts down. The NIC interrupt in the ISR are disabled and
enabled by directly programming the NIC hardware I/O ports. Before exiting, the NIC ISR
wakes up the user space thread that runs the polling engine.

 The periodic polling task is paced by hardware RTC timer interrupts. The RTC timer ISR
reads the RTC register and then simply wakes up the user space thread and exits. The RTC
register have to be read to keep the periodic timer running and generating interrupts. This is a
specific and unwanted feature (for this situation) of Motorola's MC146818 based RTC which
is available on every Intel x86 motherboards.

Other than blocking and waking on an event, these ioctl codes also interacts with the NIC and
RTC hardware to enable NIC interrupt and the polling timer. The code that enables the NIC
interrupt is inside LKM's ioctl implementation for "wait for NIC interrupt". This part of the
ioctl implementation also disables the RTC timer before enabling the NIC interrupt (Fig. 10).
The NIC interrupt is enabled by directly programming its I/O ports. The code that enables the
RTC timer interrupt is part of ioctl implementation for "wait for timer interrupt". The RTC
timer is enabled or disabled by programming its I/O ports. More details of these LKM ioctl
implementations are explained, in the following paragraphs.

The polling engine logic is presented as pseudo code in Fig. 11 and the LKM ioctl logic is in
Fig.12. After the circular queue and the read pointer have been set up, the user space program
control enter the poll engine loop (Fig. 11). At the entry point of the loop the DMA buffer is
checked for presence of packets, if packets are available then they are processed. NIDS
application processing involves examining various portions of the packet. Whereas for other
applications, packet processing will mean protocol processing and extraction of data payload.
These operations can be carried out by parsing the packet and inserting appropriate pointers.

The hybrid poll engine operates in interrupt mode when it expects low packet arrival rates and
switches to polling operation when it expects higher packet arrival rates. In every poll cycle,
after completion of the event data processing task the expected arrival rate is forecasted.
Packet arrival rate is a random variable, so future packet rates cannot determined with
certainty, they can only be predicted. This forecasted packet rate is weighed in favor of most
recent arrival rates. If the forecasted rate is below a certain threshold then the poll engine
blocks itself and waits for the NIC interrupt. If it is above the threshold then the polling engine
blocks and waits for the hardware timer interrupt which invokes the polling cycle. This
threshold is set to be equal to the fixed poll period. To cover a very wide range of packet rate,
say, corresponding to 100Mbps to 10 Gbps wire speeds, two or more thresholds and
corresponding different polling rates can be implemented. To block and wait for the NIC and

Fig. 11: User space polling engine logic

Carry out set up tasks;
Get circular queue entry point;
Set up the read pointer;

While (true) {
 if (packets_present) {
 perform packet processing;
 call function for detection tasks;
 increment read pointer;
 }
 else{
 compute arrival rate;
 if (arrival rate > threshold) {
 ioctl (wait for polling timer interrupt);
 }
 else {

 ioctl (wait for NIC interrupt);
 }
}

Fig. 12: LKM ioctl logic

ioctl (command) {
 switch(command) {
 ……..
 case "wait for polling timer interrupt":

if (timer is not enabled) {
 enable polling timer;
}

 sleep in wait queue;
 break;

 case "wait for NIC interrupt":
 if (timer is enabled)

 disable polling timer;
 enable NIC interrupt;
 sleep in wait queue;
}

timer interrupts, the poll engine makes corresponding ioctl call to the LKM as described
earlier.

The ioctl code in the LKM, that corresponds to "wait for NIC interrupt", disables the timer if it
is enabled, then it enables the NIC interrupt and finally it places the current thread in a wait
queue to block it (Fig. 12). This thread is woken up by the next NIC ISR execution. On
waking up, the waked up thread returns the ioctl function call made by the poll engine and the
poll engine continues with the next iteration of its endless loop.

The ioctl code in the LKM, which corresponds to "wait for RTC interrupt", checks whether
the hardware timer is enabled or not, and if it is already enabled, then it places the current
thread in the wait queue to block it (Fig. 12). If the hardware timer was not enabled, then the
ioctl code enables it before blocking the current thread. When the next timer interrupt invokes
the timer ISR, the timer ISR wakes up the sleeping thread. This thread then returns the ioctl
function call back to the polling engine, so that the polling engine can proceed with the next
iteration of the poll loop.

The polling engine may not switch over to polling mode immediately after getting first few
rapidly arriving packets. The polling engine observes a sufficient number of packet arrivals,
and if it is convinced that the average packet arrival rate is indeed high, only then it switches
to polling mode. Similarly the polling engine takes the decision to fall back to interrupt based
operation only after some time has elapsed from the instant the packets arrival slows down.
This inertia is implemented in the polling engine as a part of the algorithm which computes
the average arrival rate. Mode switching is quite expensive and this behavior avoids frequent
switching between modes due to overall system jitter. This strategy conserves the CPU.

The polling engine startup tasks involves: opening the miscellaneous device; making a
mmap() request to the LKM to map the DMA buffer in the user space; setting the descriptor
and buffer pointers; setting the current user space thread to high priority; pinning the current
process memory to RAM by "mlockall()" call; and finally starting the polling engine.

5.3 Forecasting packet arrival rate

In a hybrid interrupt-polling architecture, sharp and correct mode transition is the key to
superior performance. A sharp mode transition means that the architecture should switch
modes within a narrow packet rate band. Sharp mode transition is achieved by threshold based
mode switching. Correct mode transition means immunity to noise. Inter-packet period is a
random variable. Time to time, a group of packets may arrive in a closely packed bunch even
though the average and most likely inter-packet period may be large. This transient
phenomena might misguide the system into frequent mode switching, thus this phenomena is
considered as noise. Task response jitters in the receiving host also contribute to this noise.
Frequent mode switching wastes CPU resources hence it is undesirable. The system should be
immune to packet rate transients but should recognize a more permanent increase in packet
rate. Only if sufficient number of packets have arrived with low inter-packet period then the
system should quickly switch to polling mode. The packet rate forecasting mechanism
manifests all these desirable system behaviors. The subsequent paragraph presents the
implementation details of the forecasting mechanism.

Packet arrival rate can be represented by its reciprocal, the inter-packet period. All
comparisons and computations in the system are carried out with this inter-packet period
representation. Measurement of time between two consecutive packet arrival events gives the
inter-packet period. It is impossible to determine the exact moment of a packet arrival in a
practical system which suffers from event delivery latencies or which sometimes operate in
polling mode. Therefore in lieu of determining the exact moment of packet arrival, the time
when a packet is detected in DMA buffer is noted and utilized for estimating inter-packet
period. Intel Pentium CPUs provide a register which gives the CPU clock cycle count. Time
period between two intervals is estimated by computing the difference between the register

readings corresponding to beginning and end of the interval and then dividing the difference
by the CPU clock frequency.

A polling or packet processing task cycle is either initiated by NIC interrupt or a timer
interrupt. Packets may be detected and processed in a processing cycle or may not be detected
in the current cycle. A processing cycle in which packets are detected and processed is an
"active" cycle. More than one packets may be detected and processed in an active cycle. The
time period between completion of the last "active" processing cycle and the current "active"
one gives an estimate of the total inter-packet period for a group of packets which are detected
and processed in the current cycle. So the most recent average inter-packet time can be
estimated by dividing this measured time interval by the number of packets processed in the
current active cycle. As more than one packets can be processed in the current cycle so a
moving average effect is implicit in this computation. This is explained by Fig. 13 and
embodied in the following equation (Eqn. 1).

The most current inter-packet period "Tcurr" is given by -

The Ccurr and Cprev terms represents the time instants in terms of CPU clock cycle count. The
most recent packet arrival rates give better estimate about the arrival rate of immediate future.
So the packet rate forecast is biased to most recent arrival rate, which is estimated based on
sufficient number of inter-packet period observations. If the recent inter-packet period
estimate is based on detection of a sufficiently larger number of packets in the current active
cycle, then the most recent inter-packet period estimate itself can be considered as a good
forecast. But if the number of packets processed in the current active cycle is small so that
they do not form a good sample size, then the weighted average of most recent inter-packet
period and the average of past inter-packet periods forms an alternative forecast. These
computations are expressed by the following equations.

The predicted inter-period rate Tpred is given by a weighted average expression -

prevcurrpred TTT)1(* αα −+= …………………….……Eqn. 2

where Tprev is the inter-packet period forecasted in the previous cycle

where -
Ccurr is the current CPU clock count

Cprev is the CPU clock count of the previous active processing cycle

sCPU is the CPU speed

"n" is the number of packets processed in the current cycle

ns

CC
T

CPU

prevcurr
curr *

)(−
=

CPU

prevcurr

s

CC)(−
=

when n > 0

when n = 0

……….Eqn.1

Fig. 13: Estimation of current packet rate

Time

DMA transfer

t0
Packet processing

task
Inactive cycle

n = 1
T= (t1- t0)/1

n = 2
T= (t4- t3)/2

n = 4
T= (t3- t1)/4

n = 0
T= (t2- t1)

t2 t3 t4t1
Legend

n = number of packets processed
T = current estimate of inter-
packet period

Indicates DMA transfer of
one packet

The term, Tprev, carries information about the historical packet arrival rates. This term has been
computed by moving average method. Thus the prediction of expected inter-packet period is
based upon a combination of weighted average and moving average methods. The weight "α"
of the weighted average expression can be varied depending on "n", the number of packets
processed in the current active cycle. This variable weight scheme implements noise rejection
and correct mode switching behavior.

The weight "α" is defined as -

Due to jitter in task response times and packet arrival rates, "n", the number of packets
processed is a random variable. When more packet arrive between two active cycles, the
sample size is larger, then more confidence can be placed on the most current inter-period
estimate, that, it represents the current inter-packet period. The level of this confidence may
be increased if the most current inter-packet period is based on larger number of packets,
therefore a larger value of "α", i.e. α2 may be chosen. This scheme manifests an inertial
behavior to avoid frequent mode switching. The inertial behavior can be fine tuned by
choosing different combinations of α1, α2, n2 and n1. These are settable parameters. Fig. 14
presents part of the polling engine code that predicts the packet arrival rate.

5.4 Settable parameters

The implementation allows several compile time settable parameters in the LKM: page cluster
size during page allocation for DMA ring; packet buffer size, that defines the maximum
packet size that can be received; and size of DMA ring. The run time settable parameter in the
user space drivers are: polling rate; packet rate threshold at which the system would switch its
mode of operation; and the prediction algorithm parameters - α1, α2 , n2 and n1.

A larger page cluster size will allocate larger clusters of contiguous pages which will increase
the extent of contiguousness in the DMA buffer. The IP packet buffer sizes (1500 and 9000
Bytes) do not align with Linux memory page (4096 Bytes) boundaries. So some memory is
wasted if too small cluster size is chosen. To reduce this memory wastage a bigger cluster is

when n > n21=α
when n2 > n > n12α=

1α= when n1> n

………………….….…Eqn 3

where α1 < α2 < 1 , α1 and α2 are fractional constants and n2, n1 integer constants

While (true) {
 if (packets present) do packet analysis and detection tasks;
 else{
 get current CPU clock count;
 time elapsed since last active cycle = (current clock count- previous cycle clock count)/CPU speed ;

 if (packets processed > 0)
 current packet period = time elapsed since last active cycle / packets processed;
 else

 current packet period = time elapsed since last active cycle;

if (packets processed < n1) alpha = alpha1;
 else if (packets processed < n2) alpha = alpha2;

else alpha = 1;

predicted packet period = alpha * current packet period + (1-alpha) previous packet period;
previous packet period = predicted packet period;

if (predicted period < threshold) ioctl (wait for polling timer interrupt);
 else ioctl (wait for NIC interrupt);

 }
}

Fig. 14: Pseudo code for forecasting packet arrival rate

preferable. On the other hand bigger clusters are difficult to allocate, DMA ring allocation
failures would be likely with very big cluster sizes. The memory page contiguousness may
have other favorable or unfavorable effects in the memory management system, which may
affect the performance of the system as whole. Study of these effects is beyond the scope of
this paper, but this settable parameters provides flexibility for such study and optimization.

Packet buffer size setting determines the size of the biggest packet that can be received.
Maximum size requirement for fast 100 Mbps Ethernet is 1500 Bytes, for gigabit Ethernet it is
9000 Bytes. This settable parameter allows customization of the architecture for such
applications. NIDS application will need the maximum packet buffer size. Provisioning bigger
packets means reserving and pinning larger kernel memory, which might adversely affect the
system performance unless a larger memory and corresponding support in kernel is available.

A larger DMA ring is necessary to mask adverse effect of jitters in task response and context
switching times if a Linux kernel without real-time support is used. A larger buffer reduces
the likelihood of buffer overflow. A larger buffer also allocates a larger memory which may
adversely affect the system performance beyond a certain level. The settable parameter
provides flexibility to set the optimum buffer size for a given OS kernel and hardware.

The polling rate determines the worst case packet delivery latency and the CPU utilization.
For a general purpose OS like Linux it also indirectly affects the task response time and
polling period jitters. Higher polling rate improves the average packet delivery latency
performance to certain extent, because DMA buffer is checked for packets more frequently,
hence packet idle time is lower. However higher polling rate increases the CPU utilization
sharply due to increased timer interrupt servicing and polling overheads. Due to unavailability
of CPU resources, packet receiving tasks are delayed which shows up as higher jitter in packet
delivery latency. So for a given CPU speed, a tradeoff has to be made during setting the
polling rate. A settable polling rate allows the required flexibility to study these effects and
arrive at the optimum figure for a given OS kernel and hardware. The threshold at which the
polling engine makes a transition from interrupt based operation to polling mode and back, is
generally kept same as the polling rate, to get a smoother transition between operation modes.
A combination of higher value of - α1 , α2 , n1 and n2 yields superior responsiveness and yet
manifests better immunity to transient noise. We determined the optimal values based on
some quick simulation and empirical tests.

5.5 Start up and run time operations

A device node for the miscellaneous device has to be created from the user shell by a "mknod"
command with major number 10 and minor number 240. Instead of the Linux NIC driver the
LKM is loaded in the memory by "insmod". After this the LKM waits for the user space
driver to start up. The NIDS application initializes the polling engine at startup. Once started,
the polling engine examines the DMA ring and upon finding it empty it makes an "wait for
NIC interrupt" type ioctl call to the LKM. The corresponding ioctl call blocks in the LKM and
the current user process (the polling engine task) thread is put to sleep in the wait queue. The
system is now ready to receive packets, it will wake up whenever a packet arrives. A timing
diagram associated with run time operation is presented in Fig. 15.

When the first packet arrives (Fig. 15), the NIC transfers this packet to the DMA ring and
raises an interrupt. The NIC ISR disables the NIC interrupt and wakes up the blocked "wait
for NIC interrupt" type ioctl. The user space thread is waked up and ioctl call returns to user
space. If no more packets arrive by the time the user space thread finishes processing this
single packet, the user space thread computes that the inter-packet period is higher than the
threshold so it makes a "wait for NIC interrupt" type ioctl call. The ioctl counterpart in LKM
enables the NIC interrupt and then blocks the current user space thread till the next NIC
interrupt. The next NIC interrupt wakes up the user space thread and the ioctl call returns to
user space. In the mean time more packets may arrive and may be transferred to the DMA ring

by the NIC, but no more interrupts will be raised. The waked up polling task finds these
packets and process them. If there are no pending packets in the mapped DMA ring, the
polling engine computes the expected inter-packet period. Due to the inertia the polling engine
might still decide not to switch mode and still call the "wait for NIC interrupt" type ioctl
which enables the NIC interrupt. So there might be another NIC interrupt arriving leading to
another interrupt driven processing cycle.

If sufficient number of packets have arrived rapidly and if the expected inter-packet period is
lower than the inter-packet threshold, then the polling engine decides that this time it has to
switch mode and calls the ioctl of type "wait for polling timer interrupt". The corresponding
ioctl code in the LKM first checks whether a polling timer is already running or not. As the
polling timer has not been activated earlier, therefore it starts the periodic polling timer. Once
the periodic polling timer is started the ioctl blocks itself in the same waiting queue as before.

Now onwards the NIC interrupts are not raised though packets may keep on arriving in the
DMA ring. Periodically timer interrupts arrive, and the timer ISR wakes up the sleeping user
process and the polling engine. Upon waking up the polling engine process the packets
available in the DMA ring. As the packets continue arriving at high rate, so the polling engine
decides to continue in polling mode and calls "wait for polling timer interrupt" type ioctl.

If the arrival rate is high then the polling operation is continued in the same manner as
described above, else, the polling engine makes a "wait for NIC interrupt" type ioctl call to the
LKM to initiate interrupt based operation (not shown in Fig. 15). The corresponding LKM
ioctl code stops the polling timer, enables the NIC interrupt and then blocks in the same wait
queue till the NIC raises another interrupt.

5.6 Implementation choices and rationale

Some aspects of the architecture can be implemented by alternative means. The most
important implementation decision is the choice of OS. Other aspects are: choice of hardware
timer; method to disable and enable interrupt; memory sharing mechanism; task blocking and
unblocking mechanism; choice of algorithm to predict packet arrival rate and decide switching
between interrupt and polling modes; placement of application specific processing code; and
measurement of time. Implementation methods, which improved performance, reduced
development effort or improved portability, were chosen.

Fig. 15: DMA ring operation

LegendDMA transfer of a packet

Exit and entry of ioctl code in LKM.

Indicates that one task/event invokes another task

Interrupt event

Time

DMA transfer

Timer interrupt

NIC interrupt

NIC ISR

LKM ioctl execution for "Wait for timer interrupt"

Packet processing task

Timer ISR

Polling operationMode switchInterrupt based operation

LKM ioctl execution for

"Wait for NIC interrupt"

This architecture has limited vulnerability from high interrupt latency and kernel-to-user-
space context switching times. These latencies will delay the user space polling task, which
clears the DMA buffer. Bigger DMA ring size may only retard the buffer overflow to higher
packet rates, but it will not solve the problem. None of the vanilla 2.4 kernels are suitable due
to their high task response jitters. Other than Redhat 8 and RTAI-vanilla Linux combination
the probable OS candidates are: Redhat 8 (custom 2.4.18) Linux kernel, 2.6 preemptable
kernels, Linux based RTOS which support hard real-time in user space, like PSDD with
RTLinux (FSMLabs) and LynxOS (Lynux works). 2.6 kernels are claimed to have bounded
jitters [23], but 2.6 based Fedora core 3 kernel unexpectedly failed to work satisfactorily, due
to high task response jitters. RTLinux and LynxOS have their own proprietary commercial
kernels and therefore were too constraining, so those were not explored. Next few paragraphs
illustrate why Redhat 8 and RTAI-LXRT are suitable.

Redhat 8 kernel have smaller task response jitters within the given operation range therefore
could be used with the proposed architecture. This was primarily due to two reasons: the
system wide interrupt rate was low even during high packet arrival rate; and the architecture
reclaimed CPU resources so that the adverse impact of CPU overload on response jitter was
lower. System wide periodic interrupt rate was low because RTC (8.2Khz) and PIT timer
(512Hz) interrupt rates were the only two sources. The normal background aperiodic
interrupts due to hard disk, AGP display card, mouse and keyboard activity were never high
enough to cause any problem. The jitter behavior of Redhat 8 Linux was quantified to ensure
the performance of the proposed architecture operating on it. Jitter in the polling RTC timer
period in user space was noted at very high packet rate, (148 kpps) (Fig. 16).

The RTC polling timer periodicity was 122 microseconds, the observed worst case period was
2345 microseconds. The maximum theoretical packet arrival rate possible on a 100 Mbps
network for 64 Byte packets is 100*106/(64*8) = 195 kpps. The corresponding inter-packet
arrival rate is 1/195 ≈ 5 microsecond. Number of packets that can accumulate in the DMA
buffer due to worst case jitter is 2345/5 = 469 packets. So a DMA buffer size of 1024 is
sufficient to contain the effects of this jitter. A DMA ring size of 2048 (safety factor of 4)
allowed receiving of over four billion packets without any loss over an 8 hour continuous
operation at 148 kpps packet rate with Redhat 8. The VGA display power saving features was
kept on, which caused large jitters during power shutdown-wake-up cycle. Redhat 8's success
in this stress test further confirmed its suitability of. Whereas 2.6 kernel based Fedora 3 failed.

Similar experiments with two different kind of timers with user space tasks on RTAI-LXRT
yielded the better results (Fig. 17). These two timer options are discussed in details later. The
timer period was set at 122 microsecond, whereas the observed worst case period was 185
microsecond. Under such situation the maximum number packets that can accumulate in the
DMA buffer is 185/5 = 37. So with LXRT, a DMA buffer size of 64 was found sufficient.

Fig. 16: Redhat 8 timer jitter
(122 microsec period, on PIII 333Mhz)

148 kpps packet rate

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Polling period , microsec

L
o

g
 o

f
F

re
q

u
en

cy

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180 200
Polling period , microsec

L
o

g
 o

f
F

re
q

u
en

cy

Periodic task jitter rt_sleep() jitter

Fig. 17: LXRT-RTAI timer jitter
(122 microsec period, on PIII 333Mhz)

Other than RTC, other hardware timers are also available, like LAPIC timer, available in
every CPU and the IO-APIC timer in P3 and P4 architectures. Programming these APIC
timers requires more effort hence for validation purpose RTC timer was used which is
comparatively simple to program. Some NICs have programmable timers, but their reliable
operation is doubtful, especially when the NIC gets loaded with high packet arrival rates.

Interrupt masking sti(), cli() operations in the CPU were not used to disable-enable interrupts.
Because masking in the CPU would allow the interrupts to enter the programmable interrupt
controller (PIC) system and strain it. Interrupt disable-enabling at the source hardware is
better generic approach, because if multiprocessor hardware is used because there would be
no contention about which CPU's interrupt has to be masked. The network card interrupt can
also be enabled or disabled by programming the LAPIC in case of uniprocessor system or IO-
APIC in multiprocessor system. But correctly programming these APICs requires more effort
than programming NIC I/O ports. However programming the APIC to disable-enable interrupt
makes the implementation more generic across different NICs, but it is also difficult to make
the code portable across different types of motherboards (without redundant codes that
determine the PIC organization). This is because interrupt is routed differently in different
motherboards. Some boards use LAPIC, some use IO-APIC to route interrupts, sometimes
some interrupts are not routed through APIC but through 8259 based legacy PICs. Interrupt
disabling-enabling in 8259 based PIC chips are slow operations, the response is slower than 2
microsecond, whereas programming the NIC employs two I/O operations, a read and a write,
which takes a total time around 1 microsecond to complete.

Instead of using ioctl system call and wait-queue mechanism to block and unblock task, poll()
function call to the LKM device node could have been made. A poll() system call on a device
blocks if there is no data available to read in the device memory, and the poll() call returns
when some data is available. But this poll() mechanism was not chosen as it deteriorates
performance [3]. Poll() mechanism involves signaling to wake up tasks, which is complex and
consumes CPU cycles.

A modified form of the algorithm presented in [5] could have been used instead of the
implemented algorithm. However that algorithm did not favor more recent estimates to predict
the packet arrival rate. Therefore that algorithm was not chosen. Standard Linux/Unix system
call, gettimeofday() and kernel API call do_ gettimeofday() are not used to measure time
because these are inaccurate, they do not have sub-microsecond granularity and consumes lot
of CPU cycles. On the other hand CPU clock cycle counter provides nano-second level time
measurement precision and consumes only a few CPU cycles. Older Intel CPUs (P3, P2) are
32 bit ones, so instead of full 64 bits, only lower 32 bits of the clock cycle counter value was
used in the calculation to avoid expensive 64 bit maths.

5.7 Implementation in RTAI-LXRT

About RTAI-LXRT: The proposed interface was also implemented for RTAI-LXRT 3.1 with
vanilla Linux 2.4.24 for uni-processor Intel systems (Fig. 18). RTAI or "Real-Time
Application Interface" is not a full-fledged RTOS. RTAI co-kernel just provides real-time
services in any vanilla Linux platform [1]. The RTAI API is essentially meant for the kernel
level tasks. With RTAI, any task that has to run in hard real-time has to be a kernel task that is
coded as loadable kernel module (LKM). LXRT is a separate module which sits on top of
RTAI and vanilla Linux to expose the RTAI services in user space (Fig. 18). With LXRT in
place, a user space task can also enjoy hard real-time privileges. LXRT is employed because
the polling engine and data processing tasks can be deployed as a Linux process and still be
run as a hard real-time task. With LXRT, the hard real-time task does not need to be
segregated from the rest of the application and put in the kernel as a LKM. This hard real-time
user space task is not a Linux user space task in strict sense, it is a LXRT task which simple
enjoys the Linux user space memory protection privileges. It is not scheduled by Linux
scheduler but handled by RTAI scheduler in conjunction with LXRT. The code is developed,

compiled and loaded in memory from Linux as a Linux process. Once loaded, the task is
migrated from Linux to LXRT domain by making a special LXRT API function call (Fig. 18).
This scheme has an apparent limitation. Once the task has been migrated and it cannot call
any function which leads to a Linux system call and yet maintain its hard real-time status. If it
ever makes such a Linux system call then the task migrates back to Linux's soft real-time
domain. This essentially means that the hard real-time LXRT task has to do without Linux
system calls or functions which lead to a system call. This is a fair tradeoff, because even in
Linux real-time tasks, one has to avoid system calls as they lead to poor performance. In any
case the proposed "DMA ring" architecture is designed to operate without making any system
calls during runtime.

Specific changes required in user space code for porting to LXRT: The LKM and user space
components are similar to those of Linux Redhat 8 implementation, with only few
implementation differences. In the user space component the "wait for NIC interrupt" and
"wait for RTC interrupt" type ioctl() system calls cannot be used, they are replaced by two
LXRT API calls to achieve the block and wait for NIC interrupt or timed wakeup events.
There could be many choices among the LXRT API that could achieve this same purpose,
however not all lead to superior performance, this aspect is discussed in next sub-section. The
following additions are made in the setup portion of the code. After the Linux thread priority
is changed to the highest value and memory is pinned to RAM by "mlockall()" call, a LXRT
task is created by a LXRT API function call "rt_task_init()". The RTAI clock timer mode is
set to periodic by calling "rt_set_periodic_mode()", and then it is started with
"start_rt_timer()" call. The current task is migrated from Linux domain to RTAI-LXRT
domain by calling "rt_make_hard_real_time()". Ancillary "libpcap" functionalities which
depend on Linux system calls can not be supported with LXRT hard real-time task.

Specific changes required in LKM for porting to LXRT: In the LKM, instead of using the
Linux ISR, ISR for RTAI have to be used for NIC and RTC timer interrupts. These basic ISR
codes for NIC and RTC interrupts remains the same as in Redhat 8, only registration
procedure and their prototypes are different. Instead of registering the ISRs with Linux, they
are registered with RTAI kernel by calling the "rt_request_global_irq()" RTAI API function.
After registering the ISRs, they are enabled in the PIC hardware by calling "rt_startup_irq()"
and "rt_enable_irq()" RTAI API functions for each ISR registered. In each ISR code, the
interrupt have to be acknowledged by calling "rt_ack_irq()" RTAI API function in addition to
normal acknowledging procedure for the NIC and RTC hardware. This "rt_ack_irq()" has to
be called at the exit of the ISR. The NIC and RTC interrupts are only to be handled by the
RTAI domain therefore these interrupts are not released to Linux. Interrupts are not passed on
to Linux domain unless an explicit 'rt_pend_linux_irq()" RTAI API function call is made.
These ISRs wake up the blocked LXRT. There are few implementation choices available to
achieve this, but not all of them yield good performance.

NIC1 NIC2

Fig. 18: System architecture with RTAI-LXRT

User
space
NIDS

Linux

User
space
NIDS

libpcap
LKM2LKM1

Host computer hardware

system calls

Migrates

LXRT RTAI co-kernel

libpcap

5.8 Implementation choices in LXRT and rationale

Pacing the poll engine: The polling engine task runs as a periodic task when polling is
enabled, but it runs as an aperiodic task when running in interrupt mode. The polling engine
task needs to frequently switch back and forth between periodic and aperiodic modes very
quickly (Fig. 19). To service 100 Mbps network, this switching has to complete within few
microseconds, a larger switching time will increase the task response time, will require bigger
DMA buffer and consume CPU time.

Four alternatives were considered to implement this mechanism. In LXRT, a task can be
defined as periodic by calling the "rt_task_make_periodic()" LXRT API function. Once the
task is made periodic it will run with the predefined periodicity. No mechanism could be
found to stop and start this periodic task at will. No API could be found that can turn the
periodic task back to aperiodic mode. However theoretically this task can be stopped if the
timer itself can be modulated to start and stop at will (Fig. 19). As the timer drives the
periodic task, so it is hopped that this strategy can indirectly control the task. Modulating the
timer can be achieved by two ways: either by explicitly starting and stopping the periodic
timer or by using a single shot timer. LXRT API functions are available to start/stop a
periodic timer or to employ a single shot timer instead of a periodic one.

The RTAI kernel for uniprocessors is timed by 8254 chip based programmable interrupt timer
(PIT). Programming this PIT as a single shot timer is costly, it involves an overhead of 15 to
20% of the time period [27], therefore running the timer as monoshot mode was not explored.
An alternative second option is explicitly starting and stopping the timer by "start_rt_timer()"
and "stop_rt_timer()" LXRT API calls. But stopping this timer caused preemption of the
current task for 10 milliseconds, which is unacceptable. A probable explanation for this
phenomenon is presented here. The RTAI co-kernel for uniprocessors is clocked by PIT,
which is shared between RTAI and Linux. When the RTAI native kernel timer is set for 122
microsecond periodicity, the RTAI programs the PIT with 122 microsecond. RTAI receives
these 122 microsecond interrupts and release them to Linux at 100 Hz rate (approximately).
When the RTAI native kernel timer is stopped, the current task thread is preempted and the
PIT is programmed back to 100HZ mode. The current task is again waked up at the next
scheduling point which happens at the next PIT interrupt event, only after 10 millisecond. For
RTAI co-kernels for SMP architectures, the native kernel timers are implemented by LAPIC
timers, hence in case of RTAI for multiprocessors this phenomenon may not manifest and
perhaps the periodic timer may be modulated. This requires empirical verification.

Due to the above mentioned phenomenon, the third option based on "rt_sleep()" LXRT API
function was chosen. In this scheme the task is not defined as periodic, the timer is run in
periodic mode with periodicity of 122 microsecond. When the polling task needs to block and
wait for the next timer period, it calls the "rt_sleep()" function with a sleep time of 122
microsecond. So after 122 microsecond the polling task wakes up again to execute the next
polling cycle. This sleep function blocks the current thread until the sleep time is elapsed, the
logic is similar to Unix/Linux sleep mechanism. But "rt_sleep()" has far lower jitter than
Unix/Linux sleep due to its real-time nature. This "rt_sleep()" mechanism yielded a little more
jitter than the LXRT periodic task jitter, which is the best case (Fig. 17). Though "rt_sleep()"
mechanism introduce higher jitters, but still it had to be chosen rather than declaring the
polling task as periodic. This allowed the switching of the polling task between periodic and

Fig. 19: Poll engine task switching

Modulated
timer interrupts

Polling operation,
poll task is periodic

Interrupt
modePoll engine

task

Interrupt mode of operation,
poll task is aperiodic

aperiodic modes at will. The fourth option is to employ the RTC timer interrupts to pace the
polling engine. DMA ring operation with RTC timer based polling was also implemented on
LXRT to compare its performance against the "rt_sleep()" mechanism. For higher packet
rates, during polling mode of operation, rt_sleep() with PIT timer operation consumes less
CPU resources compared to RTC timer (Fig. 20). However as the PIT timer is always running,
due to additional interrupt servicing overheads the rt_sleep() mechanism consumes higher
CPU resources even when the system operates in interrupt mode. RTC timer options have
similar response jitter profile as rt_sleep() option as presented in Fig. 17.

Waking up poll engine on NIC interrupt event: The NIC interrupt ISR needs to wakeup the
blocked LXRT task. The blocking and waking up of LXRT task can be achieved by two
alternate mechanisms. LXRT provides a semaphore, known as RTFIFO semaphore, which can
be shared between the user space and RTAI kernel space. A task can take this semaphore only
if it is free, if the semaphore has already been taken by another task, then the requesting task
blocks till the requested semaphore is freed up by the other task. The requesting task unblocks
when the semaphore is available. This binary semaphore is created with an initial value "0",
which means semaphore has unavailable status. The LXRT polling task requests for the
semaphore and blocks itself by making a "rtf_sem_wait()" LXRT API call. When an NIC
interrupt arrives the ISR makes a "rtf_sem_post()" call to release the semaphore, i.e. change
the semaphore value to "1". As a result the LXRT task wakes up.

An alternate way to achieve this same blocking waking up operation is to use task suspend-
resume mechanism. In this scheme the LXRT task suspends itself by making
"rt_task_suspend()" LXRT API call with its own task id as the argument. When a NIC
interrupt arrives, the ISR resumes the blocked LXRT task by calling "rt_task_resume()" RTAI
API function. The task id is registered with the LXRT so that the same task id is available in
both kernel and user space.

Usage of RTFIFO semaphore was suggested in the RTAI documentation code examples, this
scheme works fine as long as the interrupt rate is low, however it fails under high operation
cycle rate above 6.5 kHz for the given PII 333Mhz hardware. Therefore the suspend-resume
scheme was used in the present work. The RTC timer interrupt ISR also wakes up the LXRT
task by similar suspend-resume mechanism.

5.9 Modifications carried out in the existing NIC driver

The existing Linux NIC driver was modified to implement the required LKM for Redhat 8
and this LKM was then ported to RTAI-LXRT. Most Linux PCI NIC drivers follow a similar
pattern in code organization and operations, so the modifications can be localized within few
specific well defined areas in the driver code and the modifications steps can be defined. The
existing code for PCI resource, network media and NIC hardware management was retained
as it is. These portions embody the NIC hardware specific knowledge. No modifications are
carried within these codes. These required modifications are generic and applicable to most
PCI NICs. Modification of the existing driver allows reuse of the existing open source code.

Fig. 20: CPU utilization comparisons at low and high packet rates

0

10

20

30

0 5 10 15
Input packet rate, kpps

%
 C

P
U

 u
ti

liz
at

io
n

DM A ring on Redhat 8 with RTC tim er

DM A ring on LXRT with RTC tim er
DM A ring on LXRT with rt_sleep()

0

10

20

30

0 30 60 90 120 150
Input packet rate, kpps

%
 C

P
U

 u
ti

liz
at

io
n

DM A ring on Redhat 8 with RTC tim er
DM A ring on LXRT with RTC tim er
DM A ring on LXRT with rt_sleep()

This avoids the need to know the NIC hardware specifics and develop the code to manage the
NIC hardware from scratch.

Modifications for Redhat 8 implementation: A few new code segments are added in the
existing module structure which are marked by "new". The code for the following operations
were added in the following twelve areas:

(i) Data structure declarations: All additional data structures required to implement the
LKM are added.

(ii) Module initialization code: Access to RTC timer ports are setup along with the ISR
for the RTC timer interrupt. The miscellaneous device is also registered here.

(iii) Module exit and clean up code: RTC ports and interrupt are released and
miscellaneous device is de-registered.

(iv) Device setup: Allocate memory for the miscellaneous device data-structure, compute
memory requirement for entire descriptor ring in term of whole memory pages,
reserve and pin memory pages for descriptor ring, and create the descriptor ring.

(v) Device initialization: Allocate memory for packet buffers in contiguous memory
segments, pin those memory pages, setup/map these packet buffers for DMA transfer.

(vi) Device shutdown: Unmap DMA region, unpin and free the memory pages allocated to
packet buffers.

(vii) Miscellaneous device "open" implementation (new): Increments the device usage
counter.

(viii) Miscellaneous device "mmap" implementation (new): Maps the memory pages
hosting descriptor ring and the packet buffers to user space.

(ix) Miscellaneous device "close" implementation (new): Decrements the device usage
counter.

(x) Miscellaneous device "ioctl" implementation (new): The two ioctl functions
corresponding to "wait for NIC interrupt" and "wait for RTC interrupt" are
implemented.

(xi) Interrupt sub-routine for NIC: Generally packet receiving is implemented as a
function which is called from the ISR. This single function call in the ISR code is
replaced by two or three statements to disable the NIC interrupt and to wake up the
blocked user space thread.

(xii) Interrupt sub-routine for RTC timer (new): RTC timer register is read to enable it for
next interrupt (RTC specific feature) and blocked user space thread is woken up.

The more intricate modifications like packet buffer allocation and freeing operations were
packaged inside the two library functions - dev_alloc_skb_from_page() and
dev_kfree_skb_from_pages().

Modifications for LXRT implementation: The NIC driver developed for the DMA ring
architecture for Redhat 8 was ported to work with RTAI-LXRT by making the following
minor modifications, in addition to those enumerated above:

(i) Module initialization code: Instead of setting up the NIC and RTC timer interrupts for
Linux, these ISRs are setup for RTAI by calling RTAI API function
"rt_request_global_irq()" instead of the usual Linux kernel API function
"request_irq()".

(ii) Module exit and clean up code: NIC and RTC timer interrupts are released from
RTAI by calling " rt_free_global_irq()".

(iii) Interrupt sub-routine for NIC: The prototype of the existing Linux ISR is simply
changed to the prototype for RTAI ISR, the internal code remains the same.

(iv) Interrupt sub-routine for RTC timer (new): Only the prototype is changed from Linux
ISR format to RTAI ISR format, internal code remains as it is.

6. Performance evaluation
We compared performances of the proposed architecture [8,9] with the existing solutions -
Linux (Redhat 8, custom low latency 2.4.18 kernel with 512HZ), NAPI (as in Redhat 8) and
PFRING (patched 2.4.24 vanilla kernel with 100HZ), against five criteria - (i) load bearing
capacity, in terms of maximum number of NIDS rules tolerated by each architecture without
suffering any packet loss for the highest packet rates possible on 100Mbps, (ii) packet loss
percentage (system throughput) for a given number of NIDS rules to execute, (iii) packet rate
capacity in terms of maximum tolerable packet rate with no packet loss for a given number of
rules to execute, (iv) detection latency for a given number of NIDS rules to execute and (v)
worst case memory requirement. Detection latency is the time between the packet arrival
event and the completion of the analysis/ detection task. Smaller memory footprint is desirable
to get benefits of a limited cache size. All comparisons are presented for small packet sizes
(64 Bytes) because small packets that create most stress to the system. Comparison for larger
packet sizes can be found in [3,8]. We present the comparison against criteria (ii) to (v) for
160 detection rules, which involves pattern matching. This specific number of rules were
chosen because it causes 0% loss for DMA ring. Packet loss of all other architectures is
compared against the base case (0% in DMA ring). Higher load bearing and packet rate
capacity, lower packet loss, detection latency and memory requirements are desirable features
in a packet capturing architecture. All the loss and latency figures are computed based on
observing at least 106 packets. More details about the setup can be found in [3,8].

Fig. 21 compares the load bearing capacity of DMA ring against Linux, NAPI, PFRING,
PFRING with NAPI for different packet rates. These envelopes give the maximum number of
NIDS detection rules that each architectures can bear without loosing any packets for a given
packet rate. DMA ring shows higher load bearing capacity at higher packet rates compared to
all other architectures.

Fig. 22 compare the packet loss behavior of DMA ring against those of the others. System
throughput can be derived from it. When the average throughout the entire range is considered
(regardless of the packet loss), then the architectures can be ranked in the following order
(best to worst) - DMA ring, PFRING with NAPI, PFRING, NAPI, Linux. These architectures
are ranked in terms of the maximum tolerable packet rates for no loss (Table I).

Fig. 23 compares the worst case latencies in log scale for various architectures at different
packet rates. Both, at higher and lower packet rates, DMA ring appears to be the best, except
for a narrow band between 8kpps and 37kpps, where DMA ring on Redhat scores second
position. Except DMA ring all other architectures introduce severe jitter in the detection

0

200

400

600

800

1000

0 20 40 60 80 100 120 140
kppsL

o
ad

 b
ea

ri
n

g
 c

ap
ac

it
y,

n

o
. o

f
ru

le
s

Linux NAPI
PFRING PFRING + NAPI
DMA ring (RH8)

64Byte

Fig. 21: Load bearing capacity

0

20

40

60

80

100

0 40 80 120 160kpps

P
ac

ke
t

lo
ss

 %

Linux NAPI
PFRING PFRING+NAPI
DMA ring (RH8)

64Byte
160 rules

Fig. 22: Packet loss behavior

latency, whereas DMA ring manifests a low latency value. By introducing high jitter, these
other architecture deteriorates the load bearing capacity at small packets sizes (Table I), so
only DMA ring can be used when real-time, mission critical packet capturing is involved.

Table I: Maximum Tolerable No Loss Packet Rate
(160 rules, 64Byte packet)

Rank Architecture No loss capacity

1 DMA ring (best) 148 kpps

2 PFRING 52 kpps

3 PFRING + NAPI 18.5 kpps

4 Linux 35 kpps

5 NAPI (worst) 23 kpps

Table II ranks the architectures on basis of worst case memory utilization criteria, when these
architectures are provisioned to capture and transmit a maximum size of 1500 Byte IP
packets. DMA ring uses significantly less memory than PFRING architectures. Memory
requirement of DMA ring on Redhat 8 is higher than NAPI and Linux because DMA ring
requires a large DMA buffer of size 1024. However high memory requirement is not intrinsic
to DMA ring and it can be reduced by implementing it on real-time platform like RTAI-
LXRT.

Table II: Worst Case Memory Requirement
(for 1500Byte packet)

Rank Architecture Worst case memory requirement in Bytes

1 DMA ring (LXRT) (best) 98304

2 NAPI 524288

3 Linux 1150976

4 DMA ring (RH8) 1572864

5 PFRING + NAPI 6532608

6 PFRING (worst) 6536064

DMA ring is found to be overall superior in terms of higher load bearing capacity and packet
rate capacity; lower packet loss, detection latency and memory utilization. This demonstrates
the advantage of using - lower polling rate, single user space task thread to avoid context
switching, and shared staging area.

7. Advantages of the proposed interface
DMA ring architecture reduces both per packet and per byte packet processing cost
component, thus it yields superior performance at small and large packet sizes, unlike [6,7].

Fig. 23: Worst case detection latency at low and high packet rates

0
1
2
3
4
5
6
7

0 10 20 30kpps

lo
g

 o
f

w
o

rs
t

ca
se

re

sp
o

n
se

 t
im

e
in

m

ic
ro

se
c

Linux NAPI
PFRING PFRING + NAPI
DMA ring (RH8) DMA ring (LXRT)

64Byte,
160 rules

0
1
2
3
4
5
6
7

0 20 40 60 80 100 120 140
kpps

lo
g

 o
f

w
o

rs
t

c
a

s
e

re

s
p

o
n

s
e

 t
im

e
 i

n

m
ic

ro
se

c

Linux NAPI
PFRING PFRING + NAPI
DMA ring (RH8) DMA ring (LXRT)

64Byte,
160 rules

DMA ring is a scalable software solution that does not require any modifications in the
network adapter, host hardware, or in the OS kernel. It does not depend on any low
availability, difficult to administer custom patch for the OS kernel. DMA ring can work on
either Redhat 8 or any RTAI-LXRT vanilla Linux combination. The performance of the single
thread, single buffer architecture scales linearly with CPU speed. In its present form it can
work on any uniprocessor or multiprocessor Intel Pentium hardware. With a single minor
modification it can be ported to work with other non-Intel CPUs that supports either Redhat 8
or RTAI-Linux. The timing measurement based on Pentium clock cycle counter (TSC) is the
only CPU dependent function that needs to be modified. It can work with any PCI NIC with
commodity features. The modifications carried out on the NIC driver to obtain the LKM
component are well defined and can be applied to any generic Linux NIC driver. The intricate
modifications are packaged into two functions, which are similar to existing Linux kernel
APIs. Other NIC drivers can be modified using these functions.

DMA ring is a non-adaptive hybrid interrupt-polling mechanism which is partly implemented
in the user space and partly in the NIC driver. It involves only a single task thread, thus it
reduces context switching in the real-time critical path. The differentiating features of DMA
ring are - low fixed polling rate (polling overheads amortized over many packets), lower
context switching frequency, no border crossing for data, no copy, no memory allocation
operation, simplified computation to decide operation mode (polling or interrupt), no need for
task balancing and simple buffer overflow management (moderate increase of DMA buffer size
solves the problem).

8. Related works and discussions
Discussions on related research about improving network interfaces [3,4] and their evaluation
can be found in [3]. So performance related works on NIDS are only discussed here. Much
work on improving performance of NIDS is based on applying efficient pattern matching
algorithms or signature detecting approaches. Some NIDS vendors claim that protocol
analysis improves both efficiency and effectiveness [29]. Appropriate signature keyword
selection by neural networks and automatic rule clustering have been shown to improve NIDS
effectiveness [18,30]. A combination of static pattern matching along with dynamic checking
for protocol analysis have been also claimed to improve effectiveness [16]. Faster string
matching algorithm can also improve performance [11,31]. Interestingly [32] had pointed out
that along with improving string matching algorithm, custom NIC drivers may improve
"snort's" throughput, but unfortunately the idea of custom NIC was discouraged on grounds
that it would reduce the portability of snort. We disagree with this position due to following
reasons: (i) Linux NIC drivers can be modified by applying a patch, (ii) making patches for
couple of Linux drivers for popular NIC hardware are moderately trivial if the guideline and
the library functions, developed by us are used, as presented in this paper. Installing and
maintaining a NIDS itself demands quite some expert time, patching or modifying the existing
NIC drivers does not require much additional effort. The additional driver modification effort
is worth the performance gain if it can avoid distributed NIDS deployment and the associated
complexities. Implementing detection, traffic splitting or preprocessing functionalites in the
NIC firmware itself may reduce the computation load in the host CPU and improve the
throughput. NIC based NIDS has been shown to be feasible [33]. The NIC may implement
onboard traffic splitting logic, it can receive inbound traffic and then route the outbound
traffic to specific sensors without involving the host CPU. This strategy may boost the
throughput of a host based traffic splitter. Simple traffic splitting rules can be implemented on
the NIC firmware, whereas the software running on host CPU can implement more complex
rules. Favorable effects of cache memory and adverse effects of deep CPU pipelines on sensor
performance have been discussed in [34] and [20]. Reference [12,15,20,21] addressed
distributed deployment of NIDS to tackle high traffic volume. Reference [22] addressed the
same bottleneck problem by suggesting multithreaded NIDS architecture on multiprocessor
hardware. Reference [35] also suggested use of multiprocessor hardware on improving packet

capturing, however this work did not demonstrate the realizable benefits by presenting any
implementation. This work is largely theoretical and had not examined the key issues of
practical packet capturing and multi threaded architecture to sufficient depth. None of these
works addressed or attempted to solve the root cause of this bottleneck, i.e. limitation of the
OS and its device interface. On the other hand our work identified the causal factors behind
this bottleneck and proposed a viable solution to improve the performance at the component
level, in the traffic splitter and in the detection sensors.

Reference [34] compared performance of NIDS applications on a variety of hardware which
provides some insights to choose the right hardware. Reference [36] compared performance of
a NIDS on a variety of OS. On the other hand [31] compared performance and execution
behavior of different content matching NIDS rule sets.

9. Conclusion
In this paper, we presented a case study on Network Intrusion Detector System (NIDS) to
demonstrate the importance of an efficient real-time software interface. This study articulated
how a NIDS can be hardened against high bandwidth network attacks by adopting a real-time
interface for packet capturing and alarm dispatching. We briefly discussed the key causal
factors behind the packet capturing bottleneck in Linux and the existing packet capturing
solutions: NAPI and PFRING. The details of the design, implementation, deployment and
operation of the proposed interface for open source Linux and RTAI were presented. We
discussed most of the relevant nuances of a system design and implementation for wire speed
packet capturing. Some performance comparisons were presented to demonstrate how this
mechanism may obviate the need for additional or more powerful hardware for monitoring
moderate packet rates. Finally, we discussed related works on NIDS performance
improvement.

References
[1] RTAI Official website. https://www.rtai.org/
[2] Hard Real-Time Networking for Real-Time Linux. http://www.rts.uni-hannover.de/rtnet/
[3] A. Biswas, P Sinha, “A high performance packet capturing support for alarm management

systems”, Proce. of the 17th IASTED International Conference on Parallel and Distributed
Computing and Systems, 2005.

[4] P. Wang, and Z. Liu, "Operating system support for high performance networking, a survey",
http://www.cs.iupui.edu/~zliu/doc/os_survey.pdf

[5] B. Vanderpool, and Z. Smith, "A linux implementation of HIP," Project report, University of
Wisconsin, MD, http://web.demigod.org/~zak/documents/college/ece750-report/pdf, 1998.

[6] M.N. Thadani, and Y.A. Khalidi, "An efficient zero-copy I/O framework for Linux," Sun
Microsystems Laboratories Inc., CA http://research.sun.com/techrep/1995/smli_tr-95-39.pdf. 1995.

[7] B. Murphy, S. Zeadally, and C.J. Adams, "An analysis of process and memory models to support
high-speed networking in a UNIX environment," Proc. of the USENIX 1996 Annual Technical
Conference. San Diego, CA, 1996.

[8] A. Biswas, P Sinha, “A high performance platform for intrusion detection sensors,” Proce. of the
4th IASTED International Conference on Communications, Internet and Information Technology,
Cambridge, MA, 2005.

[9] A. Biswas, P Sinha, “On improving performance of Network Intrusion Detection Systems by
efficient packet capturing,” Proce. of the 10th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2006), Vancouver, Canada, 2006.

[10] V. Paxson, "Bro: A System for Detecting Network Intruders in Real-Time," Proce. of 7th USENIX
Security Symposium, San Antonio, Texas, 1998. http://www.ece.cmu.edu/~adrian/731-
sp04/readings/paxson99-bro.pdf

[11] C.J. Coit, S. Staniford, J. McAlerney, "Towards faster string matching for intrusion detection or
exceeding the speed of Snort," Proce. of DARPA Information Survivability Conference &
Exposition II, 2001. DISCEX '01. Vol. 1, pp. 367 - 373, June 2001.

[12] C. Kruegel, F. Valeur, G. Vigna and R. Kemmerer, "Stateful intrusion detection for high-speed
networks," Proce. of 2002 IEEE Symposium on Security and Privacy, pp. 285- 293, 2002.

[13] G. Judge, A Verus,"FPGA Architecture Ups Intrusion Detection Performance," Sep 03, 2003,
http://www.commsdesign.com/printableArticle/?articleID=16502099

[14] L. Deri, "Improving passive packate capture : beyond device polling",
http://luca.ntop.org/Ring.pdf, 2004.

[15] L. Schaelicke, K. Wheeler and C. Freeland, "SPANIDS: A scalable network intrusion detection
load balancer," Proce. of the 2nd Conf. on Computing frontiers, Ischia, Italy, pp. 315 - 322, May
2005.

[16] R. Sekar, Y. Guang, S. Verma, T. Shanbhag, "A high-performance network intrusion detection
system", Proce. of the 6th ACM conference on Computer and communications security, Nov.
1999.
http://dbvis.fmi.uni-konstanz.de/members/panse/seminar_ws0203/pdf/sekar99highperformance.pdf

[17] S.A Yemini, S. Kliger, E. Mozes, Y. Yemini and D. Ohsie, "High speed and robust event
correlation," Communications Magazine, IEEE, Vol.34(5), pp. 82 - 90, May 1996.

[18] C. Kruegel and T. Toth, "Automatic Rule Clustering for improved, signature-based Intrusion
Detection,” tech. report, Distributed Systems Group, Technical Univ. Vienna, Austria.
konstanz.de/members/panse/seminar_ws0203/pdf/sekar99highperformance.pdf

[19] A.P. Foong, T.R. Huff, H.H. Hum, J.P. Patwardhan, G.J. Regnier, "TCP performance re-visited".
http://www.cs.duke.edu/~jaidev/papers/ispass03.pdf.

[20] I. Charitakis, K. Anagnostakis, and E. Markatos, "An active traffic splitter architecture for intrusion
detection," Proce. of the 11th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer Telecommunications Systems, pp. 238 - 241, Oct. 2003.

[21] N. Desai, "Optimizing NIDS Performance," at http://online.securityfocus.com/infocus/1589
[22] B.Haagdorens, T. Vermeiren and M. Goossens, "Improving the performance of Signature based

Network Intrusion Detection Sensors by Multi-threading,"
http://dasan.sejong.ac.kr/~wisa04/ppt/5A1.ppt

[23] P. Laurich, "A comparison of hard real-time Linux alternatives."
http://linuxdevices.com/articles/AT3479098230.html.

[24] C. Williams, Linux scheduler latency, 2002.
http://www.linuxdevices.com/articles/AT8906594941.html

[25] Salim, J. H. and Olsson, R., "Beyond softnet", 5th Annual Linux Showcase & Conference,
Oakland, CA, pp. 165-172, 2001.

[26] L. Deri, "nCap: Wire-speed Packet Capture and Transmission," Proce. of the 3rd IEEE/IFIP
Workshop on End-to-End Monitoring Techniques and Services (E2EMON), Nice, France, 2005.

[27] E. Bianchi, L. Dozio, P. Mantegazza, "A Hard Real Time support for LINUX."
http://www.aero.polimi.it/~rtai/documentation/reference/rtai_man.pdf

[28] J. Kiszka, "Real-Time Ethernet on Top of RTAI," www.rts.uni-hannover.de/rtnet/
download/RTAI-Meeting04_RTnet.pdf .

[29] Network ICE, "Protocol Analysis vs. Pattern Matching in Network and Host Intrusion Detection
Systems," http://www.seclib.com/seclib/ids.general/Protocol_Analysis_vs_Pattern.pdf

[30] R. Lippmann and S. Cunningham, "Improving intrusion detection performance using keyword
selection and neural networks," Computer Networks, vol. 34, pp. 594-603, 2000.

[31] S. Antonatos, K.G. Anagnostakis, E.P. Markatos, and M. Polychronakis, "Performance analysis of
content matching intrusion detection systems," in Proce. of 2004 International Symposium on
Applications and the Internet, pp 208 - 215, 2004.

[32] N. Desai, "Increasing Performance in High Speed NIDS, A look at Snort’s Internals,"
http://www.linuxsecurity.com/resource_files/intrusion_detection/Increasing_Performance_in_High
_Speed_NIDS.pdf

[33] M. Otey, R. Noronha, G. Li, S. Parthasarathy and D. K. Panda, "NIC-based intrusion detection:
A feasibility study," http://dmrl.cse.ohio-state.edu/papers/ICDM02-ws.pdf, November 27, 2002 .

[34] L. Schaelicke, T. Slabach, B. Moore, & C. Freeland, "Characterizing the performance of network
intrusion detection sensors," Proc. of the Sixth International Symposium on Recent Advances in
Intrusion Detection (RAID), Pittsburgh, PA, pp. 155-172, 2003.

[35] G. Varenni, M. Baldi, L. Degioanni, and F. Risso, "Optimizing packet capture on symmetric
multiprocessing machines", Proc. 15th Symposium on Computer Architecture and High
Performance Computing, São Paulo, Brazil , pp. 108 - 115, 2003.

[36] F. Risso, and L. Degioanni, "An architecture for high performance network analysis," in Proce. of
Sixth IEEE Symposium on Computers and Communications, pp. 686 - 693, July 2001.

	7. Advantages of the proposed interface

