Analyzing and improving GNOME startup time

Lorenzo Colitti

RIPE NCC

Abstract

The startup time of open source desktop applications anidosmeents does
not compare well with other systems, especially closedesosystems. We per-
form a detailed analysis of the startup of the GNOME desktoprenment using
a mixture of available open-source tools and ad-hoc meastechniques, iden-
tifying bottlenecks and examining strategies to improvégenance. Our results
show that startup is 1/0 bound and dominated by disk seekbttat substantial
improvements can be made at relatively little cost. We eéidhe results of the
analysis with proof-of-concept code modifications whicbyile a 40% reduction
in measured login time; many of these suggestions have loegrieal by the devel-
opers and implemented in the current releases of the apiplisan question. We
also evaluate the impact of library loading strategies aotsp time, finding that
trivial changes to the dynamic linker can provide a 10% ré&duadn the startup
time of large applications.

1 Introduction

Despite substantial advances in hardware, the time it také&sy in to the GNOME
desktop environment [1] has not improved much in recentsye@NOME startup
time also does not compare favourably with other systenpeaally closed-source
systems. In this paper, we analyse the causes of slow stémepand what can be
done to address the problem.

The paper is organised as follows: Section 2 discusses #hengrary evaluations
performed and the methodologies that emerged from thedienprary investigations
and briefly touches on related work; Section 3 describes thasarement and anal-
ysis tools used, and Section 4 presents the performancéeprsifiound. One of the
most important bottlenecks, dynamic library load time, @ due to GNOME but is
a systemwide problem that affects all large applications;discuss it in Section 5.
Section 6 provides a summary of the proposed changes amdntipzict and Section 7
contains conclusions and ideas for future work.

2 Methodology

An initial investigation of GNOME startup shows that it hégy/O bound: a simple
stopwatch test shows that logging in on a system that hadaated up takes more

than 30 seconds, while subsequent logins performed imitedgiafter the first only
take about 5 seconds. Therefore, any attempt to reducestémie must focus on
reducing I/0. Also, when measuring, care must be taken teadefaching, both by
the system buffer cache and by the hard disk. Unfortunataly,is not as easy as it
seems. In particular, since we know of no way to programraliyiclear the Linux
buffer cache, we must resort to workarounds such as loadmgg files into memory.

By far the most expensive 1/O operation is a disk head seekthétime of this
writing, fast desktop hard disks run at 7200 RPM and have resstea rate of about
30-70 MB/s, but a random access time of about 10-15 ms, witgolates to 60-100
read operations per second. Therefore, while sequengsidsnmight obtain close to the
maximum transfer rate, a worst-case random read on a 4k-blesystem would read
at most 100 4k blocks per second, or 400kB/s, which is tworsroemagnitude slower.
Hard disks used in laptops computers usually run at 5400 RP#ean 4200 RPM and
are even slower. This suggests that disk seeks play an iemgadle in startup time
and that being able to measure seeks is essential to ideritity processes contribute
the most to startup time. In the rest of this paper, we develethodologies and tools
to measure startup time and identify performance problen¥©i bound applications.
Although we apply these methods to GNOME, they are not GNGIgEsific and can
be applied to analyse the startup of any I/O bound applicatio

We are not aware of much other work done on I/O profiling of epearce ap-
plications. A similar problem is tackled by Hubert [2], whakes a complementary
approach, focusing not on tuning application behaviourdsubptimising kernel be-
haviour for application use. Other work on improving opetige application startup
time has been carried out in theel oad [3] project, which, however, does not attempt
to analyse the causes of performance problems but aimsed sgpdogin time by using
readahead during system boot.

2.1 Benchmarking methods

Initially, benchmarks were run by starting the test versstdtlGNOME on a virtual

X display (Xvfb) while the system was already running another X server aed th
distribution-provided version of GNOME. Since the distiion version and the test
version are in different directories and share no files,apgroximates the behaviour of
a cold boot, unless data from a previous benchmark run igrstite cache. Therefore,
the caches were empirically flushed between runs by readme files into memory;
this approximation allowed the most obvious performanablams to be identified
and removed without having to reboot the system every time.

However, the results obtained using this method are tooyrioisllow the mea-
surement of small differences in startup time; furthermtrey do not reflect the ef-
fect of applications that may already be in cache during mbstartup but not during
benchmarking (e.gxr db, which is started both by the X server startup scripts and
by GNOME, and effectively gives no measurable performares@afty when run by
GNOME if GNOME is started immediately after X). Furthermpiteis less realistic
than benchmarking from a clean boot because of the effectshefr processes that
are running on the system. Therefore, later benchmarks pexfermed by rebooting
into single user mode and running a custom system startygt tat loadedydm the

Eead char for flying sauces (Sa1 Awp 13 130353 EDT 2005)

@)

Figure 1: Example bootchart output: (a) part of a chart; (h¢stones

GNOME display manager, which was configured for autologimfdgtunately, even
when rebooting between runs, consecutive benchmarks shihaeé startup time was
slightly higher the first time a given configuration was benelnked than on successive
trials. This may be have been due to the the hard disk’s iat&ache; to obtain con-
sistent results, every measurement was performed twicéharfist result discarded.

2.2 Hardware configuration

All tests were conducted on a Dell Latitude D400 notebook i@ %12 MB RAM and
a Toshiba MK3021GAS 30GB, 4200 RPM hard disk. The system wasing Debian
Unstable GNU/Linux with a custom 2.6.12.5 kernel and ther¥.eersion 6.8.2 X
server. The version of GNOME code analysed was downloaded the GNOME
CVS repository on 20 August 2005, shortly before the 2.18l8ase, and compiled
with j hbui | d. To avoid disturbing the distribution-provided GNOME iaktion, the
test GNOME version was installed undersr / | ocal / gnore. For the purpose of this
work, startup time is defined as the time between when gnassien is launched and
when disk activity stops with an otherwise idle system andiser intervention.

3 Tools used

Measurements were performed using a combination of egistiols and ad-hoc tech-
niques. A brief overview of these follows.

3.1 Bootchart

Bootchart [4] is a program originally written to monitor thimux boot process. It con-
sists of (i) a shell script daemon that monitors varioussysand process parameters at

regular intervals and collects the output in a series of llegfiand (ii) a Java program
run after monitoring that analyzes and processes the |lagditd produces a chart that
shows the use of system resources by various processesmgeAn example output
is shown in Figure 3.1. In order to monitor GNOME startup a fewdifications to
bootchart were made:

Non-root user support Bootchart normally stores its logs underar /| og and its
configuration files undefet c, neither of which are accessible to a non-root
user. It was modified to allow configurable log file and confégian file paths.

Better single-process supportBootchart uses a series of heuristics to collapse pro-
cesses, to merge multiple processes into one, and to etenfr@an the chart
processes which are not "interesting”. This does not work fee GNOME
startup. Bootchart does have a "single process tree” moddich it attempts
to monitor only the processes spawned by a single commanhd,dannot track
processes spawned by a process which has lost its parest wstthe case for
virtually all of the programs launched during GNOME startup

Milestone support Bootchart lacks a mechanism for marking on the graph thedime
which a particular event occurred. However, such a mechaisigssential for
monitoring specific applications and for finding out whictephs in application
startup take the most time. Therefore, support for “milest was added. The
application monitored may write strings of the form:

XXX.Yyy <string>

to a file namedni | est ones. | og in the bootchart temporary directory, where
xxx. yy is the system uptime taken from ther oc/ upt i me special file and
<string> is a text string. Bootchart will then display them on the ¢haris-
playing the milestones on the bootchart can then be achswgaly by modify-
ing the GNOME binaries to write a status line to the milestlmgewhen some
significant point in startup is reached.

3.2 Sysprof

Sysprof [5] is a Linux system profiler that uses a kernel medalprofile the entire
system as it is running. Sysprof was designed to profile CRUnant I/O usage, but
the author has also developed a kernel patch to profile blsttsron ext3 filesystems.
This has the advantage of being able to monitor all I/0 thataly occurs on the disk,
rather than simply logging I/O requestsrarad() calls. Sysprofis a GUI application,
so to monitor the GNOME startup process a console applicatis pr of - t ext , was
written. syspr of - t ext non-interactively collects profile data to a file that camthe
be opened and analysed in the Sysprof GUI. An example of 8f/spsutput is in
Figure 4.

3.3 I0log

lolog is a small kernel module developed for this projectehhiises the sysprof ext3
patch to log all ext3 block reads to the kernel log. Every klaad from the filesystem

(gdm 2982): /usr/local / gnone/ sbin/gdm bi nary 0-7

(gdm bi nary/ 2982): /usr/local/gnonme/lib/libgtk-x11-2.0.s0.0 0-7
(gdm bi nary/ 2982): /usr/local/gnone/lib/libgtk-x11-2.0.s0.0 687-718
(gdm bi nary/ 2982): /usr/local/gnone/lib/libgtk-x11-2.0.s0.0 653-684
(gdm bi nary/ 2982): /usr/local/gnonme/lib/libgtk-x11-2.0.s0.0 34-65
(gdm bi nary/ 2982): /usr/local /gnone/lib/libgtk-x11-2.0.s0.0 8-33
(gdm bi nary/ 2982): /usr/local/gnone/lib/libgtk-x11-2.0.s0.0 515-546

Figure 2: Example output afnal yzer eads. py

$./topseeks-byprocess.sh io.log.gnoneonly 5
122 nautilus
109 gnone-session.r
74 bonobo- acti vat
49 gnome- pane
46 gnomne-settings-
$./topseeks-byfile.sh io.log.gnoneonly 5
26 /usr/local /gnone/lib/libgtk-x11-2.0.s0.0
10 /usr/local /gnone/lib/libxm 2.so.2
8 /usr/lib/libstdc++.s0.6.0.5
8 /usr/lib/libstdc++.5s0.5.0.7
7 lusr/local/gnonme/lib/libpoppler.so.0

Figure 3: Output of opseeks- byfi | e. sh andt opseeks- bypr ocess. sh

will result in a line such as:

READ: 1125508642. 466082 (netacity/377) 116 /usr/local/gnone/bin/netacity

where1125508642. 466082 is a timestamppet aci ty/ 377 is the name and PID
of the process performing the read6 is the offset into the file in 4k blocks, and
/usr/ 1 ocal / gnome/ bi n/ met aci t y is the file being read.

Simple scripts were then written to parse the logs. A scriptteén in Python,
anal yzer eads. py, was used to parse I/O logs and coalesce contiguous read-oper
tions. An example of its output can be seen in Figure 3.3, wbimws thegdmprocess
reading the first 32k of thgdm bi nar y executable and thegdm bi nary itself per-
forming 6 non-contiguous reads onbgt k- x11- 2. 0. so. 0. This makes it possible
to distinguish contiguous I/O operations, which do not havarge impact on per-
formance (unless the filesystem is fragmented), from nartigoous 1/O operations,
which involve disk seeks and thus have a more significant atnga performance.

Two shell scriptst opseeks- byfi | e. sh andt opseeks- byprocess. sh, wrap
anal yzer eads. py and were used to produce lists of the files and of the processes
that are responsible for the most non-contiguous readsar-erample of their output,
see Figure 3. It is easy to see, for example, that the proeessng the most seeks is
nauti | us and the file that is read in the largest number of non-contigueads is the
GTK library.

3.4 Strace

St race is a program that traces the system calls made by anotheegwott can be
very useful to determine, which files a process is opening gfocess is blocking on
a socket, if it is timing out on a DNS lookup, etc. Strace isyv&mple to use. For
example, the commandtrace -e trace=open cat fil e will print the all the
open() system calls executed by the command cat file, with timessatopstandard
error. The output is similar to the following:

open("/etc/ld.so.cache", O RDONLY) = 3
open("/lib/tls/libc.so.6", O RDONLY) = 3

open("/usr/lib/local el/local e-archive", O RDONLY| O LARGEFILE) = 3
open("file", O RDONLY| O LARGEFILE) = -1 ENCENT (No such file or directory)

[...]

The-p pi d option requestst r ace to attach to the existing process having PID
pi d, while the- f option follows forks and outputs the system calls executedhild
processes as well.

4 Startup bottlenecks

In this section, we present performance problems in thenlpgicess that were found
during benchmarking, discuss their impact, and show thedrgment in startup time
that could be gained by eliminating them, either by repgrtime effect of proof-of-
concept modifications made or by estimating their contidlyut

4.1 Reading GConf defaults

GConf is the GNOME system for storing user preferences. dhis of the top causes
of 1/0 during GNOME startup: from a bootchart of an unmodifiestallation it can
be seen thagconf d- 2 performs almost constant I/O at many points in startup. Sim-
ply runningstrace gconfd-2 showed it opening hundreds of files in subdirecto-
ries of/ usr/ | ocal / gnome/ et ¢/ gconf/ gconf. xnl . defaul ts. This is because
the GConf database is made up of hundreds of files (one perika&lijectory trees
that mirror the configuration database hierarchy. ForelgatGConf already con-
tains code to read whole configuration directory hierarcfiem a flat file and a tool,
gconf - mer ge-tree, can be used to merge a configuration directory hierarchyy int
such afile. Merging all the files undgtonf . xm . def aul t s into one file in this way
yields an approximately 7-second reduction in startup time

Further improvement is possible: as shown in the bootcharigure 5, when
the files are merged GConf is I/O bound for about 3 secondshaerdis CPU bound
for about 4 seconds. This suggests that the flat file is beiag irto memory in its
entirety and then processed all together. Therefore, dpeds written to process the
file incrementally while reading it. As can be seen in Figuresben the files are also
read incrementallygconf - 2 performs I/O and uses the CPU simultaneously. This
yields a further 2 second reduction in startup time

Disk utilization Disk utilization

. 0

F2RIEs

Unint.sleep (1/0) | Slee Unint.sleep (1/0) |5lee
Ss 1 10s Ss 104

[l 7 |
geonf-sanity-ch| | |l

Figure 4: Example Sysprof output Figure 5: Effect of incremental parsing of
the gconf database. Left: parse after read-
ing; right: parse while reading

Still more reductions are possible by removing redundantdiations of GConf
key descriptions. The GConf database contains the deseript configuration keys
in many languages, only one of which is likely to be in use byvamuser. When all
non-English descriptions were removed from the flat file ggirsimple XSLT file, a
further two-second reduction in startup time was achieved.

These problems, with a proof-of-concept solutions, weogight to the attention of
the gconf developers, who addressed the issue. In GNOMEtRel&Conf database
is merged and translations are split into one file per langulygdefault.

4.2 Loading the C compiler to process X resource files

xr db is a program to manipulate X resource settings, which arepregerences for
certain non-GNOME applications. Is it called twice, oncetbg display manager
startup scripts to load user-specified X resources, andihdine gnome settings dae-
mon in order to match the colors of non-GNOME applicationsi® GNOME colour
theme. Since X resource files may contain C-style preprocssstementssr db calls
the system C preprocessor to process them. Unfortunatete the GNU preprocessor
is integrated in the C compiler, this requires loading thirei© compiler into memory
(about 4 MB) at login time. Patching db to use a smaller C preprocessor implemen-
tation such ascpp [6] results in a 1.5 second reduction in startup time. Thésiés
was brought up with the maintainersxafdb, but the suggested solution (detecting a
lighter C preprocessor at db runtime) did not gain consensus.

4.3 Loading CORBA servers

The Bonobo Activation server is responsible for the keepiagk of CORBA objects
and servers within GNOME. At startup, it enumerates all CABR®rvers, each of
which is described by aserver XML file; on the test system had 58 such files.
This causes a substantial number of hon-contiguous reagtgyditartup: even on an

otherwise idle system, reading the files takes more thaneténsls.

Since the server files do not change often, an obvious ogtiais would be to
maintain a cache of all the server files in a single file, whiculd be rebuilt every
time a file was modified or a new file was added. The impact of suchange was
not evaluated, but we can assume it would save over 1 secastdradp time, since if
the files are all concatenated to a single file and the cackdhiahed, reading the file
requires less than 0.25 seconds.

4.4 Loading the screensaver

The screensaver is loaded by the gnome settings daemonangyyrethe startup pro-
cess. However, it is not needed immediately after login, laading it competes for
resources with other startup tasks which are more importaherefore, the screen-
saver should be loaded only after more important startugsthave been performed.
To evaluate the effect of lazy-loading the screensaveig wrapped by a simple shell
script that loaded it after a fixed 25-second delay. Thisdgdla 1 second reduction
in startup time. Since loading the screensaver causes #in@i-amount of I/O, care
must be taken to load it when the system is otherwise idles iBBue was addressed by
the gnome settings daemon developers and in GNOME 2.14 tbersaver is loaded
after a fixed time delay.

4.5 Opening the main menu

According to our definition of startup time in Section 2, tivad it takes to open the
main menu (or “foot menu”) is not part of startup time. Howewince the main menu
takes several seconds to open and is one of the things that ésurost likely to do
just after startup, we investigated the causes of its stigigehaviour.

To determine what happens when the main menu is opened,s<caehe flushed
and thegnome- panel process was terminated. Once the panel process was automat-
ically reloaded by the systemi r ace was used to attach to it and the menu button
was clicked. Analysis of thet r ace output showed that opening the main menu took
about 4 seconds and required opening no fewer than 372 filest, ofi which (285)
were desktop shortcuts. This suggests that caching desktmpcuts in a contiguous
file would greatly help improve the response time of the magmm

5 The impact of dynamic library loading

Analysis of the I/O logs shows that most of the 1/O during GNBBtartup is caused
by loading dynamic libraries, which are not read sequdgtizcause they are loaded
with mmap() and page faulted into memory as needed. Indeed, once otineresoof
non-contiguous I/O such as reading GConf defaults are rethdiraries account for
about 65% of non-contiguous reads.

This is not something which is easy to address within GNOMiglfit Efforts
to consolidate libraries such as Project Ridley, which plém merge a number of
smaller libraries into GTK+, would not help: since largerdiies are already being

Library name # requesty Library name # requests
libgtk-x11-2.0.s0.0 32 | libgdk-x11-2.0.s0.0 6
libxml2.s0.2 10 | libORBiIt-2.s0.0 5
libpoppler.so.0 7 | libgstreamer-0.8.s0.1 5
libnautilus-private.so.2 7 | libecal-1.2.50.3 5
libgnomeui-2.s0.0 7 | libdbus-1.s0.1 5
libglib-2.0.50.0 7 | libbonoboui-2.s0.0 5
libeel-2.s0.2 7 | libbonobo-2.s0.0 5

Table 1: Libraries read in five or more non-contiguous reagtatons during startup

read sparsely usingrap() , consolidating many small libraries into one large file does
not significantly reduce the number of disk seeks. Prelaptfia libraries with reada-
head does help, since in this case the library files are restigoously. Although this
increases memory usage, it is a worthwile tradeoff on a degkiachine.

To evaluate the impact of loading libraries contiguouslyuaitime, the GTK+ li-
brary, which is the library responsible for the most seekas wreloaded simply by
executing the commandat |i bgtk-x11-2.0.s0.0 > /dev/null early in the
startup process. This had the effect of loading the libratg the buffer cache using
fast sequential reads, so when the dynamic linker perfomaedom reads at runtime
no seeks were necessary. This reduced startup time by apateky 0.5 seconds; to
determine if it was advantageous to preload other libradesall the libraries which
were read in 5 or more non-contiguous reads during the whattup process (shown
in Table 5) were preloaded in the same way. This yielded &durt-second reduction
in startup time.

These results suggested that that it would be convieniemtanify the linker in
order to be able to configure it at compile-time or run-timea¢ad whole libraries
contiguously. Therefore, a one-line patch to the glibc dyitdinker was written in
order to load every dynamic library sequentially into meynas soon as it is mapped.
The patch reduces GNOME startup time by approximately 3rs#ss@ more than 10%
improvement, and shows similar improvements in the statagpher large applications
such as the Firefox browser and the OpenOffice.org office suit

This change was suggested to the glibc developers in a megste glibc mailing
list [7], but was rejected on the grounds that the dynamiliris not an appropriate
place for such an optimisation. However, discussion witteomembers of the com-
munity suggest that at least one high-profile Linux distidou modifies the dynamic
linker in such a way.

6 Summary of proposed improvements

All the performance problems revealed by our analysis wepented to the developers
of the packages concerned, in many cases with proof-of ganoedifications showing
the performance benefits. Table 2 shows a list of the imprevéssuggested.

As can be seen, many of the proposed changes have been impdehmethe cur-
rent version of the packages concerned. Others, espetlialbe with non-GNOME

Proposed change Gain | Status | Reference

Merge GConf defaults 7 FIXED | GNOME bug #316672
Separate GConf translations 2 FIXED | GNOME bug #316672
GConf incremental reading 2 FIXED | GNOME bug #316673

Use mcpp instead of cppinxrdb | 1.5 | rejected| freedesktop.org bug #4325

Cache bonobo-activation files 1(?) — —
Lazy-load screensaver 1 FIXED | GNOME bug #316674
Preload dynamic libraries in linker 3 rejected| libc-alpha mailing list

Table 2: State of the improvements suggested

software, were dismissed by the developers as being thegvamoroach. This may be
due to the fact that those projects have a broader focustisaon single-user desktop
performance.

Figure 6 provides bootcharts of GNOME startup time before after applying
the suggested improvements. As can be seen, there is argidlstaprovement in
startup time. Ignoring the block on the left of the graph, ethcorresponds to X
server initialisation, login time is 27 seconds without rifigdtions and 16 seconds
with modifications, a 40% decrease. (Note that these rem@tsot directly comparable
to those in Table 2 because they refer to a subsequent atgtalbf GNOME.)

e Bl A

W CFU (user+ sys) \19 (W(_.\I_'.)

ﬁV%&W”VW\QMdAAM\NAAﬁMMAwi

== Disk throughput Disk utilization

Tl By 5

| A |

Al /\L/ \L—f\/ S 4 A

Figure 6: Login time before and after applying the suggestgmtovements. Above:
CPU usage. Below: disk usage.

7 Conclusions and future work

We have performed a detailed analysis of the startup of th©KHN desktop environ-
ment, identifying performance problems, evaluating timpact, and suggesting pos-
sible solutions. Our results show that startup is I/O bourtidominated by disk seeks.
We propose proof-of-concept modifications which provid®&b4eduction in startup
time; these have been suggested to the developers and manlyden implemented in
the current release of the respective applications. Kinak find that trivial changes
to the dynamic linker can provide a 10% boost in the startup tf large applications.

Although we studied GNOME, our methodologies are not GNO$pEeific and can
be used to instrument any open-source program.

There is much work that can still be done in this area. As kg&NOME itself,
the contributions of other components such as the pandijuswand desktop applets
could be analysed. On a more general note, logical next stepsmvestigating the
effect of stripped libraries and of optimising for size atrgule time: in both cases,
the resulting libraries are smaller and thus might causefewn-contiguous I/O op-
erations. The analysis could be further refined, for exarbplgenerating a graph
of disk seeks over time by each process. More methodologamatibutions would
be the development of a more generic I/O measurement steygiarhaps using the
kprobes [8] facility of the Linux kernel. This could then bgadl by anyone — including
the developers of the applications themselves — to analgges time in a very simple
manner.

Acknowledgements

The author would like to thank Owen Taylor for mentoring thisrk and for providing
support in every area. Thanks go to Ziga Mahkovec for wriBlegtchart and to Sgren
Sandmann and the many other helpful peoplgfiador a- deskt op. This work was
supported by the Google Summer of Code programme.

References
[1] The GNOME Project. GNU object model environment (GNOME)
http://ww. gnone. org/.

[2] Bert Hubert. On faster application startup times: Castdfing, seek profiling,
adaptive preloading. IRroc. Linux Symposium, July 2005.

[3] Behdad Esfahbod. Preload - an intelligent readahead ntage
http://sourceforge.net/projects/preload.

[4] Ziga Mahkovec. Bootchart.
http://ww. boot chart.org/.

[5] Saren Sandmann. Sysprof — a system-wide Linux profiler.
http://wwmv. dai m . au. dk/ sandmann/ sysprof/.

[6] Kiyoshi Matsui. Mcpp — a portable C preprocessor withidation suite.
http://ww. mL7n. org/ ntpp/ i ndex_eng. htm .

[7] Lorenzo Colitti. Using readaheadinl. so for 10% startup gain in big apps. glibc
mailing list thread, September 2005.
http://sources. redhat.conim/|ibc-al pha/ 2005- 09/ nsg00054. ht i .

[8] Prasanna Panchamukhi. Kernel debugging with kprobes.

http://ww 128.i bm coni devel operworks/ | inux/library/l-kprobes. htm,

August 2004.

