
Analyzing and improving GNOME startup time

Lorenzo Colitti

RIPE NCC

Abstract

The startup time of open source desktop applications and environments does
not compare well with other systems, especially closed-source systems. We per-
form a detailed analysis of the startup of the GNOME desktop environment using
a mixture of available open-source tools and ad-hoc measuring techniques, iden-
tifying bottlenecks and examining strategies to improve performance. Our results
show that startup is I/O bound and dominated by disk seeks, and that substantial
improvements can be made at relatively little cost. We validate the results of the
analysis with proof-of-concept code modifications which provide a 40% reduction
in measured login time; many of these suggestions have been adopted by the devel-
opers and implemented in the current releases of the applications in question. We
also evaluate the impact of library loading strategies to startup time, finding that
trivial changes to the dynamic linker can provide a 10% reduction in the startup
time of large applications.

1 Introduction

Despite substantial advances in hardware, the time it takesto log in to the GNOME
desktop environment [1] has not improved much in recent years. GNOME startup
time also does not compare favourably with other systems, especially closed-source
systems. In this paper, we analyse the causes of slow startuptime and what can be
done to address the problem.

The paper is organised as follows: Section 2 discusses the preliminary evaluations
performed and the methodologies that emerged from these preliminary investigations
and briefly touches on related work; Section 3 describes the measurement and anal-
ysis tools used, and Section 4 presents the performance problems found. One of the
most important bottlenecks, dynamic library load time, is not due to GNOME but is
a systemwide problem that affects all large applications; we discuss it in Section 5.
Section 6 provides a summary of the proposed changes and their impact and Section 7
contains conclusions and ideas for future work.

2 Methodology

An initial investigation of GNOME startup shows that it heavily I/O bound: a simple
stopwatch test shows that logging in on a system that has justbooted up takes more



than 30 seconds, while subsequent logins performed immediately after the first only
take about 5 seconds. Therefore, any attempt to reduce startup time must focus on
reducing I/O. Also, when measuring, care must be taken to defeat caching, both by
the system buffer cache and by the hard disk. Unfortunately,this is not as easy as it
seems. In particular, since we know of no way to programmatically clear the Linux
buffer cache, we must resort to workarounds such as loading large files into memory.

By far the most expensive I/O operation is a disk head seek. Atthe time of this
writing, fast desktop hard disks run at 7200 RPM and have a transfer rate of about
30-70 MB/s, but a random access time of about 10-15 ms, which equates to 60-100
read operations per second. Therefore, while sequential reads might obtain close to the
maximum transfer rate, a worst-case random read on a 4k-block filesystem would read
at most 100 4k blocks per second, or 400kB/s, which is two orders of magnitude slower.
Hard disks used in laptops computers usually run at 5400 RPM or even 4200 RPM and
are even slower. This suggests that disk seeks play an important role in startup time
and that being able to measure seeks is essential to identifywhich processes contribute
the most to startup time. In the rest of this paper, we developmethodologies and tools
to measure startup time and identify performance problems in I/O bound applications.
Although we apply these methods to GNOME, they are not GNOME-specific and can
be applied to analyse the startup of any I/O bound application.

We are not aware of much other work done on I/O profiling of open-source ap-
plications. A similar problem is tackled by Hubert [2], who takes a complementary
approach, focusing not on tuning application behaviour buton optimising kernel be-
haviour for application use. Other work on improving open-source application startup
time has been carried out in thepreload [3] project, which, however, does not attempt
to analyse the causes of performance problems but aims to speed up login time by using
readahead during system boot.

2.1 Benchmarking methods

Initially, benchmarks were run by starting the test versionof GNOME on a virtual
X display (Xvfb) while the system was already running another X server and the
distribution-provided version of GNOME. Since the distribution version and the test
version are in different directories and share no files, thisapproximates the behaviour of
a cold boot, unless data from a previous benchmark run is still in the cache. Therefore,
the caches were empirically flushed between runs by reading large files into memory;
this approximation allowed the most obvious performance problems to be identified
and removed without having to reboot the system every time.

However, the results obtained using this method are too noisy to allow the mea-
surement of small differences in startup time; furthermore, they do not reflect the ef-
fect of applications that may already be in cache during normal startup but not during
benchmarking (e.g.xrdb, which is started both by the X server startup scripts and
by GNOME, and effectively gives no measurable performance penalty when run by
GNOME if GNOME is started immediately after X). Furthermore, it is less realistic
than benchmarking from a clean boot because of the effects ofother processes that
are running on the system. Therefore, later benchmarks wereperformed by rebooting
into single user mode and running a custom system startup script that loadedgdm, the



(a) (b)

Figure 1: Example bootchart output: (a) part of a chart; (b) milestones

GNOME display manager, which was configured for autologin. Unfortunately, even
when rebooting between runs, consecutive benchmarks showed that startup time was
slightly higher the first time a given configuration was benchmarked than on successive
trials. This may be have been due to the the hard disk’s internal cache; to obtain con-
sistent results, every measurement was performed twice andthe first result discarded.

2.2 Hardware configuration

All tests were conducted on a Dell Latitude D400 notebook PC with 512 MB RAM and
a Toshiba MK3021GAS 30GB, 4200 RPM hard disk. The system was running Debian
Unstable GNU/Linux with a custom 2.6.12.5 kernel and the X.org version 6.8.2 X
server. The version of GNOME code analysed was downloaded from the GNOME
CVS repository on 20 August 2005, shortly before the 2.12.0 release, and compiled
with jhbuild. To avoid disturbing the distribution-provided GNOME installation, the
test GNOME version was installed under/usr/local/gnome. For the purpose of this
work, startup time is defined as the time between when gnome-session is launched and
when disk activity stops with an otherwise idle system and nouser intervention.

3 Tools used

Measurements were performed using a combination of existing tools and ad-hoc tech-
niques. A brief overview of these follows.

3.1 Bootchart

Bootchart [4] is a program originally written to monitor theLinux boot process. It con-
sists of (i) a shell script daemon that monitors various system and process parameters at



regular intervals and collects the output in a series of log files, and (ii) a Java program
run after monitoring that analyzes and processes the log files and produces a chart that
shows the use of system resources by various processes over time. An example output
is shown in Figure 3.1. In order to monitor GNOME startup a fewmodifications to
bootchart were made:

Non-root user support Bootchart normally stores its logs under/var/log and its
configuration files under/etc, neither of which are accessible to a non-root
user. It was modified to allow configurable log file and configuration file paths.

Better single-process supportBootchart uses a series of heuristics to collapse pro-
cesses, to merge multiple processes into one, and to eliminate from the chart
processes which are not ”interesting”. This does not work well for GNOME
startup. Bootchart does have a ”single process tree” mode inwhich it attempts
to monitor only the processes spawned by a single command, but it cannot track
processes spawned by a process which has lost its parent, which is the case for
virtually all of the programs launched during GNOME startup.

Milestone support Bootchart lacks a mechanism for marking on the graph the timeat
which a particular event occurred. However, such a mechanism is essential for
monitoring specific applications and for finding out which phases in application
startup take the most time. Therefore, support for “milestones” was added. The
application monitored may write strings of the form:

xxx.yy <string>

to a file namedmilestones.log in the bootchart temporary directory, where
xxx.yy is the system uptime taken from the/proc/uptime special file and
<string> is a text string. Bootchart will then display them on the chart. Dis-
playing the milestones on the bootchart can then be achievedsimply by modify-
ing the GNOME binaries to write a status line to the milestonelog when some
significant point in startup is reached.

3.2 Sysprof

Sysprof [5] is a Linux system profiler that uses a kernel module to profile the entire
system as it is running. Sysprof was designed to profile CPU and not I/O usage, but
the author has also developed a kernel patch to profile block reads on ext3 filesystems.
This has the advantage of being able to monitor all I/O that actually occurs on the disk,
rather than simply logging I/O requests orread() calls. Sysprof is a GUI application,
so to monitor the GNOME startup process a console application,sysprof-text, was
written. sysprof-text non-interactively collects profile data to a file that can then
be opened and analysed in the Sysprof GUI. An example of Sysprof’s output is in
Figure 4.

3.3 IOlog
Iolog is a small kernel module developed for this project which uses the sysprof ext3
patch to log all ext3 block reads to the kernel log. Every block read from the filesystem



(gdm/2982): /usr/local/gnome/sbin/gdm-binary 0-7
(gdm-binary/2982): /usr/local/gnome/lib/libgtk-x11-2.0.so.0 0-7
(gdm-binary/2982): /usr/local/gnome/lib/libgtk-x11-2.0.so.0 687-718
(gdm-binary/2982): /usr/local/gnome/lib/libgtk-x11-2.0.so.0 653-684
(gdm-binary/2982): /usr/local/gnome/lib/libgtk-x11-2.0.so.0 34-65
(gdm-binary/2982): /usr/local/gnome/lib/libgtk-x11-2.0.so.0 8-33
(gdm-binary/2982): /usr/local/gnome/lib/libgtk-x11-2.0.so.0 515-546

Figure 2: Example output ofanalyzereads.py

$ ./topseeks-byprocess.sh io.log.gnomeonly 5
122 nautilus
109 gnome-session.r
74 bonobo-activati
49 gnome-panel
46 gnome-settings-

$ ./topseeks-byfile.sh io.log.gnomeonly 5
26 /usr/local/gnome/lib/libgtk-x11-2.0.so.0
10 /usr/local/gnome/lib/libxml2.so.2
8 /usr/lib/libstdc++.so.6.0.5
8 /usr/lib/libstdc++.so.5.0.7
7 /usr/local/gnome/lib/libpoppler.so.0

Figure 3: Output oftopseeks-byfile.sh andtopseeks-byprocess.sh

will result in a line such as:

READ: 1125508642.466082 (metacity/377) 116 /usr/local/gnome/bin/metacity

where1125508642.466082 is a timestamp,metacity/377 is the name and PID
of the process performing the read,116 is the offset into the file in 4k blocks, and
/usr/local/gnome/bin/metacity is the file being read.

Simple scripts were then written to parse the logs. A script written in Python,
analyzereads.py, was used to parse I/O logs and coalesce contiguous read opera-
tions. An example of its output can be seen in Figure 3.3, which shows thegdm process
reading the first 32k of thegdm-binary executable and thengdm-binary itself per-
forming 6 non-contiguous reads onlibgtk-x11-2.0.so.0. This makes it possible
to distinguish contiguous I/O operations, which do not havea large impact on per-
formance (unless the filesystem is fragmented), from non-contiguous I/O operations,
which involve disk seeks and thus have a more significant impact on performance.

Two shell scripts,topseeks-byfile.sh andtopseeks-byprocess.sh, wrap
analyzereads.py and were used to produce lists of the files and of the processes
that are responsible for the most non-contiguous reads. Foran example of their output,
see Figure 3. It is easy to see, for example, that the process causing the most seeks is
nautilus and the file that is read in the largest number of non-contiguous reads is the
GTK library.



3.4 Strace

Strace is a program that traces the system calls made by another process. It can be
very useful to determine, which files a process is opening, ifa process is blocking on
a socket, if it is timing out on a DNS lookup, etc. Strace is very simple to use. For
example, the command:strace -e trace=open cat file will print the all the
open() system calls executed by the command cat file, with timestamps, to standard
error. The output is similar to the following:

open("/etc/ld.so.cache", O_RDONLY) = 3
open("/lib/tls/libc.so.6", O_RDONLY) = 3
open("/usr/lib/locale/locale-archive", O_RDONLY|O_LARGEFILE) = 3
open("file", O_RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)
[...]

The-p pid option requestsstrace to attach to the existing process having PID
pid, while the-f option follows forks and outputs the system calls executed by child
processes as well.

4 Startup bottlenecks

In this section, we present performance problems in the login process that were found
during benchmarking, discuss their impact, and show the improvement in startup time
that could be gained by eliminating them, either by reporting the effect of proof-of-
concept modifications made or by estimating their contribution.

4.1 Reading GConf defaults

GConf is the GNOME system for storing user preferences. It isone of the top causes
of I/O during GNOME startup: from a bootchart of an unmodifiedinstallation it can
be seen thatgconfd-2 performs almost constant I/O at many points in startup. Sim-
ply runningstrace gconfd-2 showed it opening hundreds of files in subdirecto-
ries of /usr/local/gnome/etc/gconf/gconf.xml.defaults. This is because
the GConf database is made up of hundreds of files (one per key)in directory trees
that mirror the configuration database hierarchy. Fortunately, GConf already con-
tains code to read whole configuration directory hierarchies from a flat file and a tool,
gconf-merge-tree, can be used to merge a configuration directory hierarchy into
such a file. Merging all the files undergconf.xml.defaults into one file in this way
yields an approximately 7-second reduction in startup time.

Further improvement is possible: as shown in the bootchartsin Figure 5, when
the files are merged GConf is I/O bound for about 3 seconds and then is CPU bound
for about 4 seconds. This suggests that the flat file is being read into memory in its
entirety and then processed all together. Therefore, a patch was written to process the
file incrementally while reading it. As can be seen in Figure 5, when the files are also
read incrementally,gconf-2 performs I/O and uses the CPU simultaneously. This
yields a further 2 second reduction in startup time



Figure 4: Example Sysprof output Figure 5: Effect of incremental parsing of
the gconf database. Left: parse after read-
ing; right: parse while reading

Still more reductions are possible by removing redundant translations of GConf
key descriptions. The GConf database contains the description of configuration keys
in many languages, only one of which is likely to be in use by a given user. When all
non-English descriptions were removed from the flat file using a simple XSLT file, a
further two-second reduction in startup time was achieved.

These problems, with a proof-of-concept solutions, were brought to the attention of
the gconf developers, who addressed the issue. In GNOME 2.14the GConf database
is merged and translations are split into one file per language by default.

4.2 Loading the C compiler to process X resource files

xrdb is a program to manipulate X resource settings, which are user preferences for
certain non-GNOME applications. Is it called twice, once bythe display manager
startup scripts to load user-specified X resources, and thenby the gnome settings dae-
mon in order to match the colors of non-GNOME applications tothe GNOME colour
theme. Since X resource files may contain C-style preprocessor statements,xrdb calls
the system C preprocessor to process them. Unfortunately, since the GNU preprocessor
is integrated in the C compiler, this requires loading the entire C compiler into memory
(about 4 MB) at login time. Patchingxrdb to use a smaller C preprocessor implemen-
tation such asmcpp [6] results in a 1.5 second reduction in startup time. This issue
was brought up with the maintainers ofxrdb, but the suggested solution (detecting a
lighter C preprocessor atxrdb runtime) did not gain consensus.

4.3 Loading CORBA servers

The Bonobo Activation server is responsible for the keepingtrack of CORBA objects
and servers within GNOME. At startup, it enumerates all CORBA servers, each of
which is described by a.server XML file; on the test system had 58 such files.
This causes a substantial number of non-contiguous reads during startup: even on an



otherwise idle system, reading the files takes more than 1.6 seconds.
Since the server files do not change often, an obvious optimisation would be to

maintain a cache of all the server files in a single file, which would be rebuilt every
time a file was modified or a new file was added. The impact of sucha change was
not evaluated, but we can assume it would save over 1 second ofstartup time, since if
the files are all concatenated to a single file and the caches are flushed, reading the file
requires less than 0.25 seconds.

4.4 Loading the screensaver

The screensaver is loaded by the gnome settings daemon very early in the startup pro-
cess. However, it is not needed immediately after login, andloading it competes for
resources with other startup tasks which are more important. Therefore, the screen-
saver should be loaded only after more important startup tasks have been performed.
To evaluate the effect of lazy-loading the screensaver, it was wrapped by a simple shell
script that loaded it after a fixed 25-second delay. This yielded a 1 second reduction
in startup time. Since loading the screensaver causes a non-trivial amount of I/O, care
must be taken to load it when the system is otherwise idle. This issue was addressed by
the gnome settings daemon developers and in GNOME 2.14 the screensaver is loaded
after a fixed time delay.

4.5 Opening the main menu

According to our definition of startup time in Section 2, the time it takes to open the
main menu (or “foot menu”) is not part of startup time. However, since the main menu
takes several seconds to open and is one of the things that a user is most likely to do
just after startup, we investigated the causes of its sluggish behaviour.

To determine what happens when the main menu is opened, caches were flushed
and thegnome-panel process was terminated. Once the panel process was automat-
ically reloaded by the system,strace was used to attach to it and the menu button
was clicked. Analysis of thestrace output showed that opening the main menu took
about 4 seconds and required opening no fewer than 372 files, most of which (285)
were desktop shortcuts. This suggests that caching desktopshortcuts in a contiguous
file would greatly help improve the response time of the main menu.

5 The impact of dynamic library loading

Analysis of the I/O logs shows that most of the I/O during GNOME startup is caused
by loading dynamic libraries, which are not read sequentially because they are loaded
with mmap() and page faulted into memory as needed. Indeed, once other sources of
non-contiguous I/O such as reading GConf defaults are removed, libraries account for
about 65% of non-contiguous reads.

This is not something which is easy to address within GNOME itself. Efforts
to consolidate libraries such as Project Ridley, which plans to merge a number of
smaller libraries into GTK+, would not help: since large libraries are already being



Library name # requests Library name # requests
libgtk-x11-2.0.so.0 32 libgdk-x11-2.0.so.0 6
libxml2.so.2 10 libORBit-2.so.0 5
libpoppler.so.0 7 libgstreamer-0.8.so.1 5
libnautilus-private.so.2 7 libecal-1.2.so.3 5
libgnomeui-2.so.0 7 libdbus-1.so.1 5
libglib-2.0.so.0 7 libbonoboui-2.so.0 5
libeel-2.so.2 7 libbonobo-2.so.0 5

Table 1: Libraries read in five or more non-contiguous read operations during startup

read sparsely usingmmap(), consolidating many small libraries into one large file does
not significantly reduce the number of disk seeks. Preloading the libraries with reada-
head does help, since in this case the library files are read contiguously. Although this
increases memory usage, it is a worthwile tradeoff on a desktop machine.

To evaluate the impact of loading libraries contiguously atruntime, the GTK+ li-
brary, which is the library responsible for the most seeks, was preloaded simply by
executing the commandcat libgtk-x11-2.0.so.0 > /dev/null early in the
startup process. This had the effect of loading the library into the buffer cache using
fast sequential reads, so when the dynamic linker performedrandom reads at runtime
no seeks were necessary. This reduced startup time by approximately 0.5 seconds; to
determine if it was advantageous to preload other librariestoo, all the libraries which
were read in 5 or more non-contiguous reads during the whole startup process (shown
in Table 5) were preloaded in the same way. This yielded a further 1-second reduction
in startup time.

These results suggested that that it would be convienient tomodify the linker in
order to be able to configure it at compile-time or run-time toread whole libraries
contiguously. Therefore, a one-line patch to the glibc dynamic linker was written in
order to load every dynamic library sequentially into memory as soon as it is mapped.
The patch reduces GNOME startup time by approximately 3 seconds, a more than 10%
improvement, and shows similar improvements in the startupof other large applications
such as the Firefox browser and the OpenOffice.org office suite.

This change was suggested to the glibc developers in a message to the glibc mailing
list [7], but was rejected on the grounds that the dynamic linker is not an appropriate
place for such an optimisation. However, discussion with other members of the com-
munity suggest that at least one high-profile Linux distribution modifies the dynamic
linker in such a way.

6 Summary of proposed improvements

All the performance problems revealed by our analysis were reported to the developers
of the packages concerned, in many cases with proof-of concept modifications showing
the performance benefits. Table 2 shows a list of the improvements suggested.

As can be seen, many of the proposed changes have been implemented in the cur-
rent version of the packages concerned. Others, especiallythose with non-GNOME



Proposed change Gain Status Reference
Merge GConf defaults 7 FIXED GNOME bug #316672
Separate GConf translations 2 FIXED GNOME bug #316672
GConf incremental reading 2 FIXED GNOME bug #316673
Use mcpp instead of cpp in xrdb 1.5 rejected freedesktop.org bug #4325
Cache bonobo-activation files 1 (?) — —
Lazy-load screensaver 1 FIXED GNOME bug #316674
Preload dynamic libraries in linker 3 rejected libc-alpha mailing list

Table 2: State of the improvements suggested

software, were dismissed by the developers as being the wrong approach. This may be
due to the fact that those projects have a broader focus than just on single-user desktop
performance.

Figure 6 provides bootcharts of GNOME startup time before and after applying
the suggested improvements. As can be seen, there is a substantial improvement in
startup time. Ignoring the block on the left of the graph, which corresponds to X
server initialisation, login time is 27 seconds without modifications and 16 seconds
with modifications, a 40% decrease. (Note that these resultsare not directly comparable
to those in Table 2 because they refer to a subsequent installation of GNOME.)

Figure 6: Login time before and after applying the suggestedimprovements. Above:
CPU usage. Below: disk usage.

7 Conclusions and future work

We have performed a detailed analysis of the startup of the GNOME desktop environ-
ment, identifying performance problems, evaluating theirimpact, and suggesting pos-
sible solutions. Our results show that startup is I/O bound and dominated by disk seeks.
We propose proof-of-concept modifications which provide a 40% reduction in startup
time; these have been suggested to the developers and many have been implemented in
the current release of the respective applications. Finally, we find that trivial changes
to the dynamic linker can provide a 10% boost in the startup time of large applications.



Although we studied GNOME, our methodologies are not GNOME-specific and can
be used to instrument any open-source program.

There is much work that can still be done in this area. As regards GNOME itself,
the contributions of other components such as the panel, nautilus, and desktop applets
could be analysed. On a more general note, logical next stepsare investigating the
effect of stripped libraries and of optimising for size at compile time: in both cases,
the resulting libraries are smaller and thus might cause fewer non-contiguous I/O op-
erations. The analysis could be further refined, for exampleby generating a graph
of disk seeks over time by each process. More methodologicalcontributions would
be the development of a more generic I/O measurement structure, perhaps using the
kprobes [8] facility of the Linux kernel. This could then be used by anyone – including
the developers of the applications themselves – to analyse startup time in a very simple
manner.

Acknowledgements

The author would like to thank Owen Taylor for mentoring thiswork and for providing
support in every area. Thanks go to Ziga Mahkovec for writingBootchart and to Søren
Sandmann and the many other helpful people in#fedora-desktop. This work was
supported by the Google Summer of Code programme.

References

[1] The GNOME Project. GNU object model environment (GNOME).
http://www.gnome.org/.

[2] Bert Hubert. On faster application startup times: Cachestuffing, seek profiling,
adaptive preloading. InProc. Linux Symposium, July 2005.

[3] Behdad Esfahbod. Preload – an intelligent readahead agent.
http://sourceforge.net/projects/preload.

[4] Ziga Mahkovec. Bootchart.
http://www.bootchart.org/.

[5] Søren Sandmann. Sysprof – a system-wide Linux profiler.
http://www.daimi.au.dk/ sandmann/sysprof/.

[6] Kiyoshi Matsui. Mcpp – a portable C preprocessor with validation suite.
http://www.m17n.org/mcpp/index eng.html.

[7] Lorenzo Colitti. Using readahead inld.so for 10% startup gain in big apps. glibc
mailing list thread, September 2005.
http://sources.redhat.com/ml/libc-alpha/2005-09/msg00054.html.

[8] Prasanna Panchamukhi. Kernel debugging with kprobes.
http://www-128.ibm.com/developerworks/linux/library/l-kprobes.html,
August 2004.


