
PEGASUS: Competitive load balancing using inetd

George Oikonomou1 Vassilios Karakoidas2

Theodoros Apostolopoulos1

1Department of Informatics
Athens University of Economics and Business

{g.oikonomou,tca}@aueb.gr

2Department of Management Science and Technology
Athens University of Economics and Business

bkarak@aueb.gr

1 Introduction

As it is proven by practice, load balancing techniques are the only tool that network service provider
have, in order to support and handle scalable network load. This paper presents PEGASUS, a
novel framework that provides load balancing in network services transparently, using a compet-
itive scheduling algorithm. PEGASUS is designed upon the INETD superserver, thus providing a
easy to configure, yet efficient infrastructure. The paper is structured as follows. In section 2 we
provide an overview of the current frameworks and popular implementations both open source and
commercial. Then we describe our system architecture and the basic axioms that it is designed. The
paper concludes with a benchmarking experiment of our prototype implementation, in comparison
with other popular load balancing frameworks.

2 Related Work

In the past few years, many load balancing techniques were developed to address the problem of
distributing incoming service requests in a fair fashion to server clusters. In this section we will
describe the most typical solutions used in production environments.

2.1 Round Robin DNS

One the most widely used load balancing techniques is the Round Robin DNS [4]. The nodes
offering content are mapped to the Name Server using the same domain name. The name server
responds with a different IP address for each DNS request referring to the same name. This happens
in a simple round robin manner. This scheme provides high flexibility and full transparency to the
end user. On the other hand, RRDNS is problematic when dealing with node failures. When a node
fails, the name server will not cease to direct clients to it, so without being reconfigured and thus a
percentage of requests will reach a server that is down. Furthermore, due to the caching nature of
DNS resolvers (clients) and the hierarchical approach of DNS, the RRDNS system can lead to load
imbalance. This can be avoided by the correct selection of the Time To Live (TTL) value of DNS

records. In practice, the correct choice of TTL is not trivial. A low value will result in many requests
to the Name Server, therefore making it the bottleneck. In contrast, a high value will fail to resolve
the load imbalance issue.



2.2 The Linux Virtual Server Project

The Linux Virtual Server (LVS) [11, 9] project aims to help create a scalable, highly available and
robust virtual server. The architecture is based on a set of nodes that actually offering services and a
load balancer node. The load balancer accepts all incoming requests from users. Based on a variety
of load balancing schemes, it selects a server that will actually handle the request and forwards the
request.

The LVS architecture is fully transparent from the end user perspective. No modifications are
required on the client side of the applications and users interact with the cluster in the same manner
as if it were comprised of a single server. A heartbeat scheme is implemented in order to detect
daemon failures and provide for transparent reconfiguration of the system.

The LVS load balancer uses a variety of scheduling algorithms to select the node that will serve
the requests like Round-Robin Scheduling, Weighted Round-Robin Scheduling, Least-Connection
Scheduling among others [11]. A detailed analysis of each of those scheduling algorithms is out of
scope of this paper.

The LVS uses three load balancing techniques. These are:

1. LVS via NAT (LVS/NAT)

2. LVS via IP Tunneling (LVS/TUN)

3. LVS via Direct Routing (LVS/DR)

In order for these techniques to be supported, a modified TCP/IP stack is required. Furthermore,
these techniques are all based on the assumption that all real servers offer identical services, having
identical content. The latter is achieved either by replicating the content on the local storage of
the real servers or by giving them access to a shared or distributed file system. Finally, the LVS

load balancer and the real servers need specific configuration in order to become part of the system.
The biggest advantage of LVS is that it operates purely on kernel space, making the overhead the
smallest possible. It’s biggest disadvantage is that it requires Linux operating system to execute.

2.3 mod backhand

The mod backhand project [8] is an attempt to provide a load balancing mechanism, that features
request redirection for the HTTP protocol. It is implemented as an APACHE web server module
and it is written in C++. Its architecture is quite simple, the balancer consists of a classic APACHE
server, where the mod backhand module is initialized. The information for the actual servers is
gathered on the mod backhand information manager, where the statistics are processed by the
scheduler. The main benefit of mod backhand is that it provides redirections on HTTP sessions, pre-
serving client information about access and authentication. The main drawback of mod backhand
is that is a balancing mechanism only for HTTP. Mod backhand is available for numerous operating
systems, such as Linux, Microsoft Windows, FreeBSD and Solaris.

2.4 Other Approaches

A few other approaches have been proposed as a solution to the load balancing problem. Among
them, those we consider to be most significant are NETDISPATCHER [1], REVERSE PROXY [6],
SWEB [2] and EDDIE [7]. Another significant solution is the Cisco Local Director [5], which is a
commercial, hardware based solution. All these approaches have their pros and cons,



3 Competitive Loab Balancing

Our proposal is the PEGASUS architecture, an approach that provides a simple, yet efficient,
service-transparent competitive load balancing scheme.

3.1 Architecture

The PEGASUS system architecture is illustrated in Figure 1. The system is comprised of two
distinct entities, typical for load balancing frameworks.

Balancer The balancer is responsible for the request redirection to the service providers. Each
balancer has a FIFO queue that holds tickets. Tickets are service availability notifications that
the service providers sent, in order to notify the balancer about their presence, and their ser-
vice capacity. The ticket queue is maintained by a daemon, named PEGASUS redirector. In
our prototype the balancer software is built using the INETD superserver, so that all requests
are tunneled through the balancers.

Service Provider Service providers do the actual work. The overhead that out architecture requires
is a daemon, the PEGASUS monitor, that observes the servers’ workload and send tickets to
a number of balancers. At this point we have to note that each service provider can have
one or more balancers, and divide its service capacity among them. Each service provider
has a limited capacity, known also to the balancer. Consequently a specified number of
requests can be redirected to each Service Provider, in order to ensure that we will not have
bottlenecks. The capacity is updated with each ticket update of the Service Provider, as we
will see later on.

Balancer
Service
cluster

inetd

PEGASUS
redirector

Ticket
queue

Tickets

.

.

.

.

service

PEGASUS monitor

service

PEGASUS monitor

req

resp

req

resp

Figure 1: The PEGASUS Architecture

The scheduling that our system proposes is competitive. Most implementations rely on the ex-
istence of a delegator that holds all the information about the network capacity and thus performing
the scheduling accordingly. In our case, we base our algorithm on two basic principles:

1. Each service provider wants to maximise its activity, thus it monitors the workload itself and
demands more requests from the balancers in a competitive way to the other providers.



2. The balancer receives tickets from the service provider in an ad-hoc manner and stores them
in a FIFO queue. On request, the balancer pops the first ticket form the queue and redirects
the data to the appropriate service provider.

Figure 2: The PEGASUS Protocol Stack

The pegasus protocol stack is illustrated on Figure 2. The PEGASUS protocol is in the ap-
plication layer and uses TCP for transport. The communication between the components is done
through requests. There are three available messages, (1) a ticket registration (TICKET SP), a (2)
next available service provider (NEXT SP) and (3) Service Balancer failure (FAILURE SP). The
requests are expressed through specified URLs [3].

For example the TICKET SP command, requests from the redirector to add in its ticket queue,
100 tickets with maximum capacity 100 for the Service Provider with IP address 195.255.100.10.
The request also states the service provider with its ip address, in this case 195.251.255.190.

The NEXT SP command is listed below.

pegasus://195.251.255.190/next

The above command requests the next available Service Provider in the load balancing cluster.
The response to this command is the IP address of the Service Provider or the message “error”, that
indicates that this balancer cannot server the request. Table 1 summarizes the available protocol
commands.

Message Description
TICKET SP Advertise availability by registration of tickets
NEXT SP Get next available Service Provider

FAILURE SP Informs the ticket queue that a Service Provider is unavailable

Table 1: PEGASUS protocol commands

Figure 3 depicts the internal workings of the PEGASUS load balancing system. Each request
is received by the inetd superdaemon. Afterwards, it is redirected to the balancer, which communi-
cates with the ticket queue using the protocol message NEXT SP in order to get the next available
Service Provider. Then the request is redirected to the Service provider that finally accept and
address it.



Figure 3: Internal PEGASUS Request Handling

3.2 Basic Characteristics

Our proposed architecture is the result of studying the advantages and drawbacks of previous open
and commercial attempts. We have tried to provide a solution to various issues, while at the same
time keeping the architecture as simple as possible.

Our implementation offers competitive performance and functional characteristics in the fol-
lowing aspects.

3.2.1 Multiple Points of Entry

By the term ’Multiple points of entry’ we are referring to the fact that, in contrast to most available
solutions, there is no single node that accepts all incoming requests. On the contrary, the number
of nodes that accept incoming requests is left to the discretion of the system administrator, and the
decision can be based upon performance or high availability considerations. It can be as many as
all the nodes that provide content or as few as one.

3.2.2 Scheduling

The scheduling algorithms used are implemented in library files and communicate with the core
of the system via a well defined application programming interface (API). Therefore, it is easy to
add new scheduling algorithms plug-ins. The algorithm to be used can be defined in the PEGASUS
configuration file. In our prototype we implemented a round robin algorithm using the ticket queue.
For each request the available tickets for the selected Service Provider are decreased by one. If the
balancer tries to redirect a request to a Service Provider that is unavailable, then the ticket queue is
notified for the failure and all tickets for this Service Provider are discarded.

3.2.3 Service Transparency

The system has been designed to be service transparent in a sense that the pool of nodes may
offer a variety of services with only a simple restriction. It will not handle persistent connection
applications correctly. We have assumed that each connection is independent of all others and may
be assigned to a different node. This is not true in the case of some well known applications, such
as FTP and HTTP over SSL. The aforementioned applications are based on a number of different
connections with the same end point. Furthermore, similar issues arise in the case of UDP-based
services that ’remember’ the state of the datagram exchange and are based on that to function
correctly. Such an example is the well known Trivial FTP service. In our design each UDP request
will be forwarded, in the typical scenario, to a different node. Therefore a TFTP transfer should fail.



We have refrained from considering service-specific solutions to the issue of connection affinity,
such as those proposed and used by LVS [10]. We are planning to design a generic scheme that
will automatically detect such cases and handle them correctly, without any modification to the
configuration. For example, we are considering to detect UDP ’streams’. Each UDP datagram
that is a potential part of such a stream will be forwarded to the same back-end node bypassing a
scheduling decision. This is rather similar to the way that NAT handles UDP datagram exchange.

3.2.4 Sparse Distribution of Nodes

Our proposed architecture is designed in a way that will allow for a sparse distribution of nodes,
in network topology terms. This is in contrast to NAT-based solutions which generally require all
server nodes to reside on the same network, in a sense that they must share tinetdhe same gateway
to the internet.

3.2.5 Ad-hoc

The PEGASUS system should allow a sparse physical network topology. The balancer nodes
should not be statically aware of their service providers. Each content provider should be able
to establish its presence dynamically and withdraw without notification and other configuration
change. It is PEGASUS’ system main goal, that each node will load-balance itself and notify a
number of balancers about its availability. In our prototype we gather information about each node
availability using the getloadavg function call of stdlib.h. More specifically we process CPU load
at fixed time intervals.

Furthermore, many available load balancing solutions require that all nodes offer an identical
set of services and have access to the same content. This is not necessarily the case with PEGASUS.
The same infrastructure can be used to perform balancing for multiple distinct services at the same
time. Therefore not all services will be necessarily offered by all nodes. Rather, a service will be
provided only by a subset of content providers.

3.2.6 Simple Installation and Configuration

Our proposed architecture is based on well known user space tools. The prototype implementation
is using INETD as the basis application. Using INETD we provide a simple scheme for service
categorization, using TCP/IP network ports. The rest of the system, is written in C using BSD

socket API. These decisions where made in order to make the system portable and with minimal
overhead. The prototype is not using any DBMS or other storage method. Therefore, installing the
suite of tools is a trivial task. No modification to the kernel is required. Downloading the binaries
and performing trivial modifications to text configuration files are all the tasks needed in order to
get the system up and running. Each participating service provider requires also to run a daemon
that will notify the load balancer about their availability.

3.3 Comparison

In order to compare our prototype system with other load balancing frameworks, we should define
a set a functional and non-functional characteristics. These are:

Participation policy: The policy in which the Service Providers are participating into the load bal-
ancing cluster. For example, in PEGASUS, each service provider registers and de-registers
itself according to its availability. On the other hand, in order to configure mod backhand,
the configuration files of the apache web server must be modified for each service provider.



PEGASUS LVS mod backhand RRDNS
Participation policy ad-hoc fixed fixed fixed
Network Topology sparse sparse dense sparse

OS Dependence no Linux only no no
Services TCP, UDP based TCP, UDP based HTTP any

Scheduling round robin varies varies round robin
Redirection Overhead small minimal small none

Installation Complexity minimal complex simple simple

Table 2: Comparison of Popular Load Balancing Frameworks

Network Topology: Most frameworks are dependent of the IP configuration of the load balancing
cluster. The categorization sparse denotes a cluster that includes Service Providers alienated
with each other. Dense indicates a cluster of Service Providers in the same or neighboring
subnets. Therefore, a sparse topology means that service providers can be geographically
spread over a wide region.

OS Dependence: Dependencies on one or many operating systems. For example, LVS works only
on Linux based machines.

Services: The type of services that can be balanced. For example, TCP denotes all services that
use it as transmission protocol. HTTP refers only to Hyper Text Transfer Protocol. It is all an
issue of the layer that the balancer operates on. mod backhand is essentially an application
(layer 7) redirection mechanism, whereas PEGASUS operates on layer 4 and lvs, depending
on the configuration, can perform request redirections on layer 4 or lower.

Scheduling: The scheduling algorithms that a load balancing system uses to distribute the request
among the Service Providers.

Redirection Overhead: The actual overhead of request redirection. It is categorized in small,
minimal and none.

Installation Complexity: The complexity of the installation procedure. Each installation depen-
dency increases the complexity. For example, LVS requires kernel recompilation on both
Balancers and Service Providers and it is labeled complex under this characteristic. Aside
from that, depending on the choice of configuration (lvs/nat, lvs/tun etc), it may require man-
ually tweaking the kernel routing table and setting virtual, ’spoofed’ IP adresses on the node
interfaces.

Table 2 summarizes the main characteristics of some popular load balancing frameworks.
As depicted, all frameworks have their advantages and disadvantages. Generally LVS is a

very good solution which covers all major protocols, but it is available only on Linux boxes.
mod backhand its one of the most well implemented and featured frameworks, but it supports
only HTTP. We compared PEGASUS with these frameworks having in mind the current implemen-
tation and not the final distribution. This is the reason that the scheduling characteristic has only
implemented the round robin algorithm, instead of a variety that will be available when it reaches
maturity.

3.4 Prototype Implementation

PEGASUS is implemented purely in C. It is compiled under Microsoft Windows and various UNIX

variants using GCC. To work properly on Microsoft Windows PEGASUS uses the cygwin ex-



ecution environment. The PEGASUS distribution includes three executables, a ticket queue, a
pegasus inetd redirection and a monitor module. The first two are running on the Balancer and the
monitor module on the Service Provider. The prototype was compiled with 4.0.2 version of GCC

and the request were redirected on an apache 1.3.33 web server. The initial testing of the prototype
was promising, but it is still on alpha version and no conclusive benchmarks could be conducted.

4 Conclusions and Further Work

In the near future we are planning to conduct extensive benchmarks. Furthermore, we are con-
sidering to test PEGASUS on a large-scale, real-world installation. This will, most likely include
many Server Provider nodes in a sparse topology. We will implement four distinct benchmarking
scenarios:

Single Service Provider: In this scenario a single node will act as the Service Provider.

Multiple Service Providers with mod backhand: Many Service Providers are used. Apache and
mod backhand will be used to balance requests.

Multiple Service Providers with LVS: Many Service Providers are used. Apache and LVS will be
used to provide load balancing.

PEGASUS: The same Service Providers will be used but requests will be balanced with PEGA-
SUS.

For our benchmarks we will use the infrastructures of the Computer & Communication Systems
Laboratory (CCSLAB) and the Information Systems Technology Laboratory (ISTLAB) of the Athens
University of Economics and Business. All nodes will be Intel-based, single-CPU PCs.

Security is also an issue worth considering. With the current design of PEGASUS, the message
exchange is unencrypted and the nodes that communicate do not authenticate the originator of the
message. Imagine a scenario where a malicious node pretends to be a Service Provider, issuing
ticket requests to a Ticket Server. The fact that the latter trusts that ticket requests are issued by
valid hosts would result is a number of serve requests getting redirected to the malicious host. This
could eventually lead to possible Denial of Service attacks. In order to counter this, we are planning
to use methods that will help authenticate the nodes exchanging load information messages. Those
are most likely to be combined with encrypting the content of the messages. A typical approach to
the issue could be the usage of Secure Shell (SSH) tunnels or the use of an SSL/TLS based solution.
However, this has not been decided at the time of writing.

As stated previously, the goal we had when designing the prototype application was not to
out-perform existing open or commercial solutions. Instead, we wished to offer proof of con-
cept regarding the various advantages PEGASUS has to offer. However, high performance is the
quintessence of Load Balancing schemes. Therefore, in the near future, once the prototype is stable,
we will start fine-tuning the code in order to optimise performance.

References

[1] Germ an Goldszmidt and Guerney Hunt. NetDispatcher: A TCP Connection Router. Technical
report, 1997.

[2] D. Andresen, T. Yang, V. Holmedahl, and O. Ibarra. Sweb: Towards a scalable world wide
web server on multicomputers. In Proc. of 10th IEEE International Symp. on Parallel Pro-
cessing (IPPS’96), pages pp. 850–856, April 1996.



[3] Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifier (uri): Generic syntax.
Technical report, Network Information Center, January 2005. RFC-3986.

[4] T. Brisco. DNS Support for Load Balancing. RFC 1794, April 1995.

[5] Inc Cisco Systems. World Wide Web, January 2005. Available online at
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/localdir/ldv42/index.htm.

[6] Ralf S. Engelschall. Load balancing your web site. practical approaches
for distributing http traffic. Website, May 1998. Available online at
http://www.webtechniques.com/archives/1998/05/engelschall/.

[7] Michael Rumsewicz. Web servers for commercial environments: The im-
peratives and the solution. Website, March 1999. Available online at
http://eddie.sourceforge.net/txt/WP 1.0.html.

[8] Theo Schlossnagle. The backhand project: load-balancing and monitoring apache web clus-
ters. ApacheCon 2000, 2000.

[9] Wensong Zhang. Linux virtual server for scalable network services. Ottawa Linux Sympo-
sium 2000, July 2000.

[10] Wensong Zhang. Persistence handling in LVS. Website, 2004. Available online at
http://www.linuxvirtualserver.org/docs/persistence.html.

[11] Wensong Zhang and Wenzhuo Zhang. Linux virtual server clusters: Build highly-scalable
and highly-available network services at low cost. Linux Magazine, November 2003.


