
Introduction to MySQL Cluster: Architecture and Use
Arjen Lentz, MySQL AB (arjen@mysql.com)
(Based on an original paper by Stewart Smith, MySQL AB)

An  overview  of  the  MySQL  Cluster  architecture, 
what's different about it and what problems it can 
be used to solve. We'll be looking at how High 
Availability  is  achieved  as  well  as  setup 
considerations  regarding  performance.  Basic  use 
will also be covered, from setup (including schema 
considerations) to new (and exciting!) features in 
the 5.1 release.

Introduction

MySQL Cluster is a fault tolerant in-memory clustered database designed for 99.999% 
availability  and  fast  automatic  fail  over  all  running  on  cost  effective  commodity 
hardware.

MySQL  is  an  open  source  ACID  (Atomicity  Consistency  Isolation  Durability) 
compliant Relational Data Base Management System (RDBMS) aiming towards full 
SQL standards  compliance.  It  has  a  reputation  for  ease  of  use,  speed,  quality  and 
reliability and consequently is the world's most popular open source database with over 
eight million installations.

At time of writing (March 2005) 5.1 is in beta and 5.0 is the production release. By 
publication,  a  5.1  production  release  may  be  available.  MySQL  Cluster  has  been 
included since 4.1.3 and in RPMs since 4.1.10a (there are separate cluster RPMs that 
need to be installed).  It  is  included as part  of  the MySQL-Max distribution (this  is 
different to the MaxDB product - which is a separate RDBMS by MySQL AB). MySQL 
AB officially supports MySQL Cluster on Linux, MacOS X and Solaris. Users have 
reported success with FreeBSD. Support for all MySQL platforms in the future.

The NDB Storage Engine

Storage engines are a unique architectural feature of MySQL. The VFS layer of your 
operating system allows applications to access files on different file systems through the 
one interface, MySQLs' storage engine architecture allows applications to access data 
stored  in  different  ways  all  through the  same SQL interface.  Two commonly  used 
storage  engines  are  MyISAM  (fast  inserts  and  selects,  full  text  indexes,  GIS)  and 
InnoDB (row-level locking, multi-version concurrency, ACID compliant).

MySQL Cluster provides a new storage engine for MySQL. The NDB (also known as 
ndbcluster) storage engine provides high availability in a shared-nothing architecture. 
Since there is no shared or special hardware (such as a SAN), MySQL cluster can easily 
be  implemented  on  affordable  commodity  hardware.  All  data  is  synchronously 
replicated  between  nodes.  The  NoOfReplicas  configuration  parameter  dictates  how 
many copies of the data are kept in the cluster.



In the 4.1 and 5.0 releases, all data must be held in main memory on the nodes. A rough 
estimate of the memory needed in each node is

(SizeofDatabase * NumberOfReplicas * 1.1) / NumberOfDataNodes

A transaction is committed when it is in memory of more than one node (i.e. it can 
survive a node crash). The in-memory architecture has the advantage of being very fast, 
with a single CPU core able to managing over 10,000 transactions per second.

Basic persistence is provided by periodically writing checkpoints to disk. The timing 
between checkpoints (among other things) is configurable. It is also possible to perform 
online backups of data in the cluster. After a system failure (where enough nodes have 
failed that the cluster no longer has a full data set) the system is restored to the last 
global checkpoint. When a single node is being restarted (node recovery) it will fetch 
the latest data from another node in the cluster.

The 5.1 release allows non-indexed fields to be stored on disk. In the future, it will be 
configurable if you want a disk or main memory based cluster. In current releases you 
can also configure to run in Diskless mode, where no data is ever written to disk (no 
checkpointing, no logging).

Components of a Cluster

A fairly basic cluster setup might look like this:



Applications

Applications connect to the cluster via a MySQL server exactly the same way as they 
would  if  they  were  using  any  other  MySQL  storage  engine.  Using  the  cluster  is 
transparent to the end application.

It  is  up to the connector or application to load balance between the MySQL nodes. 
Some people use load balancing products, others use features of the connector (e.g. the 
MySQL JDBC driver) and others write their own small snippets of code to load balance 
and fail over.

In the event of node failure, all transactions that were using that node are aborted and it 
is up to the application to restart them.

MySQL Server nodes (mysqld)

Multiple MySQL servers can connect to the one cluster. This provides redundancy and 
increased performance due to parallelism. When an update is performed on one MySQL 
server it is immediately viewable from other MySQL servers attached to the cluster.



Data Nodes (ndbd)

All data is  stored by the data  nodes.  This data is  visible to all  the MySQL servers 
connected to the cluster. Some MySQL special data such as the permissions and stored 
procedures are not stored in the cluster and must be updated on each MySQL server 
attached to the cluster.

Management Server Nodes (ndb_mgmd)

The management server provides configuration information to nodes joining the cluster. 
It is not a critical part of the cluster, only needing to be up for a node to join the cluster.

Management Client (ndb_mgm)

An end-user tool for administering and checking the status of the cluster. This can be 
used for starting and stopping nodes, getting status information and starting backups.

Node Interconnects

MySQL cluster supports several methods of transferring messages between the nodes. 
The most common is the TCP Transporter over 100Mbit or 1Gbit Ethernet. There can 
be significant performance gains in using gigabit Ethernet. You can also use SCI, which 
is  a  high-performance,  low  latency  interconnect.  There  is  also  a  shared  memory 
transporter  for  nodes  running  on  the  same  host,  although  it  should  currently  be 
considered experimental.

Since communications between nodes are unencrypted, it  is recommended to have a 
private network exclusively for cluster traffic. This also ensures that no other systems 
interfere with the performance of the cluster.

Sample Configuration

Below, additions to the my.cnf file are shown for connecting to a cluster. The connect 
string tells processes where management servers are so that they can join the cluster. In 
this case, we have one management server, so the connect string is just a host name.

# my.cnf
# example additions to my.cnf for MySQL Cluster
# (valid from 4.1.8)
# enable ndbcluster storage engine, and provide connectstring 
for
# management server host (default port is 1186)
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com
#  provide  connectstring  for  management  server  host  (default 
port: 1186)
[ndbd]
connect-string=ndb_mgmd.mysql.com
#  provide  connectstring  for  management  server  host  (default 
port: 1186)



[ndb_mgm]
connect-string=ndb_mgmd.mysql.com
# provide location of cluster configuration file
[ndb_mgmd]
config-file=/etc/config.ini

config.ini is the cluster configuration file (example below). In this setup we have two 
data nodes and two replicas. This means that each node holds a complete copy of the 
database. Here we allow up to three MySQL servers to connect to the cluster.

[NDBD DEFAULT]
NoOfReplicas= 2
DataMemory= 500M
IndexMemory= 100M
DataDir= /var/lib/mysql-cluster
[NDB_MGMD]
Hostname= ndb_mgmd.mysql.com
DataDir= /var/lib/mysql-cluster
[NDBD]
HostName= ndbd_2.mysql.com
[NDBD]
HostName= ndbd_3.mysql.com
[MYSQLD]
[MYSQLD]
[MYSQLD]

Failure Scenarios

If a MySQL Server node fails, it can be restarted which will reconnect it to the cluster. 
While the MySQL server is down, applications can connect to other MySQL servers 
connected to the cluster.

If a data node fails, other nodes discover the failure due to missed heartbeats. Since all 
data is synchronously replicated within the cluster, new transactions can use another 
storage node which has the same data as the failed one.

The continued operation of the cluster is not dependent on the Management Server. The 
management server only needs to be up when nodes are joining the cluster. You can 
however, have multiple management servers in the cluster.

Schema Considerations

There are several things you need to be aware of when designing (or adapting) database 
schemas to MySQL Cluster.

Indexes

There are three types of indexes in MySQL Cluster:

• Primary hash index



• Unique hash index

• Ordered tree index

Specifying a unique index from SQL will also create an ordered index unless USING 
HASH is specified.

Primary Keys

Every table has a primary key. If you declare a table in SQL without a primary key, 
NDB creates a hidden primary key. The primary key will have a primary hash index and 
an ordered index. You can specify USING HASH to skip the ordered index.

Space Usage

Mostly, the standard MySQL rules apply (as documented in the manual). However, a 
few things need to be considered:

• Prior to 5.1, only fixed size rows are supported, so a VARCHAR(255) column 
will use 260 bytes of storage no matter how much data is stored in it.

• BLOB and TEXT columns use 256 bytes of fixed space in the row. Additional 
space is allocated in 2kb chunks as needed.

• In 4.1, each primary key or hash index requires 25 bytes plus the size of the key 
per record of IndexMemory. The 5.0 release reduces this to 21 to 25 bytes per 
record. Each ordered index requires 10 bytes of DataMemory per record.

• Warnings  are  written  to  the  cluster  log  when  80%  of  DataMemory  or 
IndexMemory has been used. Warnings are again printed at each 5% increment 
of usage. A method to query this information from the management client will 
be implemented in the future.

New to 5.0

With condition pushdown enabled (via SQL: SET engine_condition_pushdown = 1; or 
through the mysqld configuration option –engine-condition-pushdown), conditions in 
the WHERE clause of an SQL statement can be evaluated on the data nodes instead of 
within the MySQL server. This can improve performance by five to ten times for such 
queries. This is due to savings in network traffic and the ability to execute the query in 
parallel.

Less  IndexMemory is  required as  the  primary key is  no longer  stored in  the index 
memory.

The MySQL Query Cache now works with Cluster.



New to 5.1

With MySQL version 5.1, it becomes possible to use MySQL replication to replicate 
tables stored on the cluster. Replication is handled by one MySQL server connected to 
the cluster which records all updates to the cluster (from any of the MySQL servers) 
into its own binary log.

Non-indexed attributes may be stored on disk instead of RAM. Indexed fields still have 
to be in memory and also the primary key hash index but all other fields can be on disk.

Variable sized records will be supported. Currently, a VARCHAR(255) column would 
use 260 bytes of data no matter what the length of the actual record was. In MySQL 5.1 
the  minimum  storage  space  will  be  used.  This  can  reduce  the  average  storage 
requirements by sometimes up to a factor of five.

Users  will  be  able  to  define  partitions  based  on  the  fields  of  the  primary  key. 
Partitioning based on KEY, HASH, RANGE and LIST handlers will be supported.

Finding out more

The MySQL Cluster product page on the mysql.com web site provides a good overview 
of the product including data sheets, white papers and customer success stories. Also 
mentioned here is the range of support and training options available from MySQL AB.

The MySQL Reference Manual provides detailed documentation on the MySQL server 
setup as well as NDB. The MySQL Cluster chapter is a good starting place if you are 
already familiar with MySQL. A HOWTO is also available as an article on the MySQL 
Developer Zone.

Two forums are frequented both by developers and users. There is a web based forum 
and a mailing list. As always, it's a good idea to read the FAQ in the manual and the list 
archives before asking questions - a lot of things have already been covered.

References

• MySQL Reference Manual (MySQL AB), http://dev.mysql.com/doc/mysql/

• HOWTO  set  up  a  MySQL  Cluster  for  two  servers  (Alex  Davies,  2005), 
http://dev.mysql.com/tech-resources/articles/mysql-cluster-for-two-servers.html

• MySQL Forums :: Cluster, http://forums.mysql.com/list.php?25

• MySQL Lists: cluster, http://lists.mysql.com/cluster

• MySQL Cluster product page, http://www.mysql.com/products/cluster/


	Introduction to MySQL Cluster: Architecture and Use
	Introduction
	The NDB Storage Engine
	Components of a Cluster
	Applications
	MySQL Server nodes (mysqld)
	Data Nodes (ndbd)
	Management Server Nodes (ndb_mgmd)
	Management Client (ndb_mgm)
	Node Interconnects

	Sample Configuration
	Failure Scenarios
	Schema Considerations
	Indexes
	Primary Keys
	Space Usage

	New to 5.0
	New to 5.1
	Finding out more


